Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542190

ABSTRACT

A glioblastoma (GBM) is one of the most aggressive, infiltrative, and treatment-resistant malignancies of the central nervous system (CNS). The current standard of care for GBMs include maximally safe tumor resection, followed by concurrent adjuvant radiation treatment and chemotherapy with the DNA alkylating agent temozolomide (TMZ), which was approved by the FDA in 2005 based on a marginal increase (~2 months) in overall survival (OS) levels. This treatment approach, while initially successful in containing and treating GBM, almost invariably fails to prevent tumor recurrence. In addition to the limited therapeutic benefit, TMZ also causes debilitating adverse events (AEs) that significantly impact the quality of life of GBM patients. Some of the most common AEs include hematologic (e.g., thrombocytopenia, neutropenia, anemia) and non-hematologic (e.g., nausea, vomiting, constipation, dizziness) toxicities. Recurrent GBMs are often resistant to TMZ and other DNA-damaging agents. Thus, there is an urgent need to devise strategies to potentiate TMZ activity, to overcome drug resistance, and to reduce dose-dependent AEs. Here, we analyze major mechanisms of the TMZ resistance-mediated intracellular signaling activation of DNA repair pathways and the overexpression of drug transporters. We review some of the approaches investigated to counteract these mechanisms of resistance to TMZ, including the use of chemosensitizers and drug delivery strategies to enhance tumoral drug exposure.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/metabolism , Antineoplastic Agents, Alkylating/adverse effects , Quality of Life , Brain Neoplasms/pathology , Neoplasm Recurrence, Local/drug therapy , DNA/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor
2.
Exp Neurol ; 374: 114695, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246304

ABSTRACT

Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.


Subject(s)
Brain Concussion , Dorsal Raphe Nucleus , Humans , Serotonin , Brain Concussion/complications , Neurons , Gene Expression Profiling , Serotonergic Neurons
3.
Curr Res Toxicol ; 3: 100093, 2022.
Article in English | MEDLINE | ID: mdl-36393872

ABSTRACT

Pyrethroid pesticides are widely used and can cause long-term effects after early exposure. Epidemiological and animal studies reveal associations between pyrethroid exposure and altered cognition following prenatal and/or neonatal exposure. However, little is known about the cellular effects of such exposure. Sprague Dawley rats were gavaged with 0 or 1.0 mg/kg deltamethrin (DLM), a Type II pyrethroid, in corn oil (dose volume 5 mL/kg) once per day from postnatal day (P) 3-20 and assessed shortly after dosing ended or as adults. No effects of DLM exposure were found on striatal dopaminergic markers, nor on AMPA receptor subunits or on NMDA-NR1. However, DLM increased NMDA-NR2A and decreased NMDA-NR2B levels in the hippocampus, in males but not females. Additionally, adult hippocampal CA1 long-term potentiation was increased in DLM-treated males but not females. Potassium stimulated extracellular glutamate release in the hippocampus was not affected using in vivo microdialysis. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) showed increased apoptotic cells in the dentate gyrus of male rats, in the absence of changes in cleaved caspase-3 at P21. Proinflammatory cytokines interferon gamma trended up in striatum, interleukin-1ß trended down in nucleus accumbens, IL-13 trended up in hippocampus, and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO or CXCL1) was significantly increased in the hippocampus in male DLM-treated rats on P20. The data point to the developing hippocampus as a susceptible region to DLM-induced adverse effects.

4.
Cancer Chemother Pharmacol ; 90(4): 345-356, 2022 10.
Article in English | MEDLINE | ID: mdl-36050497

ABSTRACT

PURPOSE: The DNA alkylating agent temozolomide (TMZ), is the first-line therapeutic for the treatment of glioblastoma (GBM). However, its use is confounded by the occurrence of drug resistance and debilitating adverse effects. Previously, we observed that letrozole (LTZ), an aromatase inhibitor, has potent activity against GBM in pre-clinical models. Here, we evaluated the effect of LTZ on TMZ activity against patient-derived GBM cells. METHODS: Employing patient-derived G76 (TMZ-sensitive), BT142 (TMZ-intermediately sensitive) and G43 and G75 (TMZ-resistant) GBM lines we assessed the influence of LTZ and TMZ on cell viability and neurosphere growth. Combination Index (CI) analysis was performed to gain quantitative insights of this interaction. We then assessed DNA damaging effects by conducting flow-cytometric analysis of Ë H2A.X formation and induction of apoptotic signaling pathways (caspase3/7 activity). The effects of adding estradiol on LTZ-induced cytotoxicity and DNA damage were also evaluated. RESULTS: Co-treatment with LTZ at a non-cytotoxic concentration (40 nM) reduced TMZ IC50 by 8, 37, 240 and 640 folds in G76, BT-142, G43 and G75 cells, respectively. The interaction was deemed to be synergistic based on CI analysis. LTZ co-treatment also significantly increased DNA damaging effects of TMZ. Addition of estradiol abrogated these LTZ effects. CONCLUSIONS: LTZ increases DNA damage and synergistically enhances TMZ activity in TMZ sensitive and TMZ-resistant GBM lines. These effects are abrogated by the addition of exogenous estradiol underscoring that the observed effects of LTZ may be mediated by estrogen deprivation. Our study provides a strong rationale for investigating the clinical potential of combining LTZ and TMZ for GBM therapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Aromatase Inhibitors/pharmacology , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , Estradiol/pharmacology , Glioblastoma/metabolism , Humans , Letrozole/pharmacology , Letrozole/therapeutic use , Temozolomide/pharmacology , Temozolomide/therapeutic use
5.
Front Pharmacol ; 13: 930346, 2022.
Article in English | MEDLINE | ID: mdl-35910378

ABSTRACT

Various forms of traumatic brain injury (TBI) are a leading cause of disability in the United States, with the generation of neuropsychiatric complications such as depression, anxiety, social dysfunction, and suicidality being common comorbidities. Serotonin (5-HT) signaling is linked to psychiatric disorders; however, the effects of neurotrauma on normal, homeostatic 5-HT signaling within the central nervous system (CNS) have not been well characterized. We hypothesize that TBI alters specific components of 5-HT signaling within the CNS and that the elucidation of specific TBI-induced alterations in 5-HT signaling may identify novel targets for pharmacotherapies that ameliorate the neuropsychiatric complications of TBI. Herein, we provide evidence that closed-head blast-induced mild TBI (mTBI) results in selective alterations in cortical 5-HT2A receptor signaling. We find that mTBI increases in vivo cortical 5-HT2A receptor sensitivity and ex vivo radioligand binding at time points corresponding with mTBI-induced deficits in social behavior. In contrast, in vivo characterizations of 5-HT1A receptor function revealed no effect of mTBI. Notably, we find that repeated pharmacologic activation of 5-HT2A receptors post-injury reverses deficits in social dominance resulting from mTBI. Cumulatively, these studies provide evidence that mTBI drives alterations in cortical 5-HT2A receptor function and that selective targeting of TBI-elicited alterations in 5-HT2A receptor signaling may represent a promising avenue for the development of pharmacotherapies for TBI-induced generation of neuropsychiatric disorders.

6.
Invest New Drugs ; 40(5): 944-952, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35802287

ABSTRACT

PURPOSE: Emerging evidence suggests that 5' Adenosine Monophosphate-Activated Protein Kinase (AMPK), a key regulator of cellular bioenergetics, is a novel target for the treatment of glioblastoma (GBM), a lethal brain tumor. SBI-0206965, an aminopyrimidine derivative, is a potent AMPK inhibitor being investigated for the treatment of GBM. Here we characterized the systemic and brain pharmacokinetics (PK) and hepatic metabolism of SBI-0206965. METHODS: We performed intracerebral microdialysis to determine brain partitioning of SBI-0206965 in jugular vein cannulated rats. We assessed systemic PK of SBI-0206965 in rats and C57BL/6 mice following oral administration. Employing human, mouse, and rat liver microsomes we characterized the metabolism of SBI-0206965. RESULTS: SBI-0206965 is quickly absorbed, achieving plasma and brain extracellular fluid (ECF) peak levels within 0.25 - 0.65 h. Based on the ratio of Cmax and AUC in brain ECF to plasma (corrected for protein binding), brain partitioning is ~ 0.6-0.9 in rats. However, the compound has a short elimination half-life (1-2 h) and low relative oral bioavailability (~ 0.15). The estimated in-vitro hepatic intrinsic clearance of SBI-0206965 in mouse, rat and human was 325, 76 and 68 mL/min/kg, respectively. SBI-0206965 metabolites included desmethylated products, and the metabolism was strongly inhibited by ketoconazole, a CYP3A inhibitor. CONCLUSION: SBI-0206965 has adequate brain permeability but low relative oral bioavailability which may be due to rapid hepatic metabolism, likely catalyzed by CYP3A enzymes. Our observations will facilitate further development of SBI-0206965, and/or other structurally related molecules, for the treatment of GBM and other brain tumors.


Subject(s)
Brain Neoplasms , Glioblastoma , AMP-Activated Protein Kinases/metabolism , Animals , Benzamides , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Drugs, Investigational , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Mice , Mice, Inbred C57BL , Pyrimidines , Rats
7.
PLoS One ; 16(4): e0248579, 2021.
Article in English | MEDLINE | ID: mdl-33798227

ABSTRACT

Based on the discovery that the estrogen synthase aromatase (CYP19A1) is abundantly expressed in high- grade gliomas, the aromatase inhibitor, letrozole is being investigated in pre-clinical models as a novel agent against this malignancy. Here, we investigated the systemic and brain pharmacokinetics of letrozole following single and steady state dosing in both male and female Sprague-Dawley rats. Furthermore, we employed physiologically-based pharmacokinetic (PBPK) modeling to gain quantitative insights into the blood-brain barrier penetration of this drug. Letrozole (4 mg/kg) was administered intraperitoneally daily for 5 days (for males) and 11 days (for females) and intracerebral microdialysis was performed for brain extracellular fluid (ECF) collection simultaneously with venous blood sampling. Drug levels were measured using HPLC and non-compartmental analysis was conducted employing WinNonlin®. Simcyp animal simulator was used for conducting bottom-up PBPK approach incorporating the specified multi-compartment brain model. Overall, marked gender-specific differences in the systemic and brain pharmacokinetics of letrozole were observed. Letrozole clearance was much slower in female rats resulting in markedly higher plasma and brain drug concentrations. At steady state, the plasma AUC 0-24 was 103.0 and 24.8 µg*h/ml and brain ECF AUC 0-12 was 24.0 and 4.8 µg*h/ml in female and male rats, respectively. The PBPK model simulated brain concentration profiles were in close agreement with the observed profiles. While gender-specific differences in letrozole PK are not observed in the clinical setting, these findings will guide the dose optimization during pre-clinical investigations of this compound. The PBPK model will serve as an important clinical translational tool.


Subject(s)
Aromatase Inhibitors/pharmacokinetics , Brain/metabolism , Letrozole/pharmacokinetics , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Aromatase Inhibitors/blood , Female , Letrozole/blood , Male , Models, Biological , Rats, Sprague-Dawley , Sex Characteristics , Sex Factors
8.
Sci Adv ; 7(7)2021 02.
Article in English | MEDLINE | ID: mdl-33568479

ABSTRACT

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms , Stearoyl-CoA Desaturase , Animals , Drug Resistance, Neoplasm/genetics , Humans , Lipid Metabolism , Lipogenesis , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Stearoyl-CoA Desaturase/antagonists & inhibitors , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
9.
Toxicol Sci ; 169(2): 511-523, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30850843

ABSTRACT

Pyrethroids are synthetic insecticides that act acutely on voltage gated sodium channels to prolong channel opening and depolarization. Epidemiological studies find that exposure to pyrethroids are associated with neurological and developmental abnormalities in children. The long-term effects of type II pyrethroids, such as deltamethrin (DLM), on development have received little attention. We exposed Sprague-Dawley rats to DLM by gavage at doses of 0, 0.25, 0.5, and 1.0 mg/kg/day from postnatal day (P) 3-20 in a split-litter design. Following behavioral testing as adults, monoamine levels, release, and mRNA were assessed via high performance liquid chromatography, microdialysis, and qPCR, respectively. Long-term potentiation (LTP) was assessed at P25-35. Developmental DLM exposure resulted in deficits in allocentric and egocentric learning and memory, increased startle reactivity, reduced conditioned contextual freezing, and attenuated MK-801 induced hyperactivity compared with controls. Startle and egocentric learning were preferentially affected in males. Deltamethrin-treated rats exhibited increased CA1 hippocampal LTP, decreased extracellular dopamine release by microdialysis, reduced dopamine D1 receptor mRNA expression in neostriatum, and decreased norepinephrine levels in the hippocampus. The data indicate that neonatal DLM exposure has adverse long-term effects on learning, memory, startle, glutamatergic function, LTP, and norepinephrine.


Subject(s)
Cognition/drug effects , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Animals , Body Weight/drug effects , Female , Hippocampus/drug effects , Hippocampus/physiology , Learning/drug effects , Long-Term Potentiation/drug effects , Male , Maze Learning/drug effects , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects
10.
Cancer Chemother Pharmacol ; 83(1): 81-89, 2019 01.
Article in English | MEDLINE | ID: mdl-30357450

ABSTRACT

PURPOSE: The aromatase inhibitor, letrozole, is being investigated in experimental animal models as a novel treatment for high-grade gliomas (HGGs). To facilitate optimal dosing for such studies, we evaluated the plasma and brain pharmacokinetics (PK) of letrozole in NOD-scid gamma (NSG) mice, which are frequently employed for assessing efficacy against patient-derived tumor cells. Furthermore, we evaluated the potential PK interactions between letrozole and temozolomide (TMZ) in Sprague-Dawley rats. METHODS: NSG mice were administered letrozole (8 mg/kg; i.p) as a single or multiple dose (b.i.d, 10 days). Brain tissue and blood samples were collected over 24 h. Letrozole and TMZ interaction study employed jugular vein-cannulated rats (three groups; TMZ alone, letrozole alone and TMZ + letrozole). Intracerebral microdialysis was performed for brain extracellular fluid (ECF) collection simultaneously with venous blood sampling. Drug levels were measured employing HPLC and PK analysis was conducted using Phoenix WinNonlin®. RESULTS: In NSG mice, peak plasma and brain tissue letrozole concentrations (Cmax) were 3-4 and 0.8-0.9 µg/ml, respectively. The elimination half-life was 2.6 h with minimal accumulation following multiple dosing. In the drug interaction study, no PK changes were evident when TMZ and letrozole were given in combination. For instance, peak plasma and brain ECF TMZ levels when given alone were 14.7 ± 1.1 and 4.6 ± 0.6 µg/ml, respectively, and 12.6 ± 2.4 and 3.4 ± 0.8 µg/ml, respectively, when given with letrozole. CONCLUSIONS: These results will guide the optimization of dosing regimen for further development of letrozole for HGG treatment.


Subject(s)
Brain Neoplasms/metabolism , Brain/metabolism , Drug Interactions , Glioma/metabolism , Letrozole/pharmacokinetics , Temozolomide/pharmacokinetics , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents, Alkylating/pharmacokinetics , Brain Neoplasms/blood , Brain Neoplasms/pathology , Female , Glioma/blood , Glioma/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Rats , Rats, Sprague-Dawley , Tissue Distribution
11.
Neurotoxicology ; 57: 282-290, 2016 12.
Article in English | MEDLINE | ID: mdl-27773601

ABSTRACT

3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.


Subject(s)
Gene Expression Regulation/drug effects , Glutamate Decarboxylase/metabolism , Hallucinogens/pharmacology , Hippocampus/cytology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Neurons/drug effects , Neurons/enzymology , Animals , Body Temperature/drug effects , Disease Models, Animal , Dizocilpine Maleate/therapeutic use , Excitatory Amino Acid Agonists/toxicity , Glutamic Acid/metabolism , Kainic Acid/toxicity , Male , Microdialysis , Rats , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Up-Regulation/drug effects
12.
J Neurochem ; 136(5): 1074-84, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26670377

ABSTRACT

3,4-methylenedioxymethamphetamine (MDMA) is a widely abused psychostimulant, which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA-treated rats, which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA-treated rats. We hypothesized that the widely abused psychostimulant MDMA causes a loss of parvalbumin (PV) cells and increases excitability in the dentate gyrus. MDMA increases serotonin (5HT) release and activates 5HT2A receptors. The increased activation of 5HT2A receptors promotes the production of prostaglandin E2 (PGE2) and subsequent activation of EP1 receptors in the dentate gyrus. EP1 receptor activation leads to eventual excitotoxicity and loss of PV interneurons resulting in reduced inhibition and lowered seizure threshold resulting in increased seizure susceptibility.


Subject(s)
Dentate Gyrus/drug effects , Hydrazines/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Neurons/drug effects , Oxazepines/pharmacology , Receptor, Serotonin, 5-HT2A/drug effects , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Animals , Central Nervous System Stimulants/pharmacology , Dentate Gyrus/metabolism , Dinoprostone/metabolism , Glutamic Acid/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Male , Rats, Sprague-Dawley , Signal Transduction/drug effects
13.
Eur J Pharmacol ; 761: 95-100, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25936514

ABSTRACT

MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.


Subject(s)
Central Nervous System Stimulants/toxicity , Dentate Gyrus/drug effects , Excitatory Amino Acid Agonists/pharmacology , Interneurons/drug effects , N-Methyl-3,4-methylenedioxyamphetamine/toxicity , Parvalbumins/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Receptors, N-Methyl-D-Aspartate/agonists , Serotonin 5-HT2 Receptor Agonists/toxicity , Animals , Cell Death/drug effects , Dentate Gyrus/metabolism , Dentate Gyrus/pathology , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , Interneurons/metabolism , Interneurons/pathology , Male , Microdialysis , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Time Factors , Up-Regulation
14.
Mol Cancer Ther ; 14(4): 857-64, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25695958

ABSTRACT

We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing µPET/CT imaging, employing [(18)F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1-3.5 µmol/L). Imaging analysis employing F18-FDG µPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options.


Subject(s)
Antineoplastic Agents/pharmacology , Aromatase Inhibitors/pharmacology , Glioma/metabolism , Glioma/pathology , Nitriles/pharmacology , Triazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Aromatase/genetics , Aromatase/metabolism , Aromatase Inhibitors/administration & dosage , Cell Line, Tumor , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Female , Gene Expression , Glioma/diagnosis , Glioma/drug therapy , Glioma/genetics , Humans , Letrozole , Nitriles/administration & dosage , Positron-Emission Tomography , Rats , Triazoles/administration & dosage , X-Ray Microtomography , Xenograft Model Antitumor Assays
15.
Biomed Res Int ; 2014: 141396, 2014.
Article in English | MEDLINE | ID: mdl-24511526

ABSTRACT

MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.


Subject(s)
3,4-Methylenedioxyamphetamine/analogs & derivatives , Hippocampus/metabolism , Neurotoxicity Syndromes/genetics , Protein Biosynthesis , Stress Disorders, Post-Traumatic/genetics , 3,4-Methylenedioxyamphetamine/administration & dosage , 3,4-Methylenedioxyamphetamine/adverse effects , Animals , Gene Expression Regulation , Neurotoxicity Syndromes/pathology , Protein Folding/drug effects , Rats , Serotonin/genetics , Serotonin/metabolism , Serotonin Agents/administration & dosage , Serotonin Agents/adverse effects , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/pathology
16.
Drug Deliv ; 21(1): 8-16, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24116937

ABSTRACT

CONTEXT: Delivery of drugs from the nasal cavity to the brain is becoming more widely accepted, due to the non-invasive nature of this route and the ability to circumvent the blood brain barrier (BBB). OBJECTIVE: Because of similarities in the proteins comprising the olfactory epithelial tight junction (TJ) proteins and those of the BBB, we sought to determine whether papaverine (PV), which is known to reversibly enhance BBB permeability, could increase the delivery of intranasally administered gemcitabine to the central nervous system in rats. Experimental methods: Included intranasal administration of gemcitabine, fluorescein isothiocyanate-dextran beads and PV, histopathology, immunostaining, RT-PCR, western blot analysis, immunofluorescence localization, spectrofluorometric analysis, in vivo brain microdialysis, HPLC analysis and in vitro gemcitabine recovery. RESULTS AND DISCUSSION: PV transiently decreased the levels and altered immunolocalization of the TJ protein phosphorylated-occludin in the olfactory epithelium, while causing an approximately four-fold increase in gemcitabine concentration reaching the brain. The enhanced delivery was not accompanied by nasal epithelial damage or toxicity to distant organs. CONCLUSIONS: The ability to transiently and safely increase drug delivery from the nose to the brain represents a non-invasive way to improve treatment of patients with brain disorders.


Subject(s)
Blood-Brain Barrier/metabolism , Deoxycytidine/analogs & derivatives , Drug Delivery Systems , Papaverine/pharmacology , Administration, Intranasal , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/pharmacokinetics , Antimetabolites, Antineoplastic/toxicity , Blotting, Western , Brain/metabolism , Chromatography, High Pressure Liquid , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacokinetics , Deoxycytidine/toxicity , Male , Microdialysis , Occludin/metabolism , Olfactory Mucosa/metabolism , Papaverine/administration & dosage , Permeability , Phosphorylation , Rats , Rats, Sprague-Dawley , Tight Junctions/metabolism , Tissue Distribution , Gemcitabine
17.
Cancer Chemother Pharmacol ; 72(2): 349-57, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23748921

ABSTRACT

PURPOSE: Emerging evidence suggests that primary and metastatic brain tumors may be sensitive to hormonal manipulations. However, the pharmacokinetics of compounds against such targets in the brain and, more importantly, in the brain tumor are not well characterized. Here, we investigated the pharmacokinetics of letrozole, a third-generation aromatase inhibitor, in the normal brain and in orthotopically implanted C6 glioma in Sprague-Dawley rats. METHODS: Intracerebral microdialysis was employed to determine the concentrations of unbound letrozole in the brain extracellular fluid (ECF) while simultaneously collecting blood samples (via jugular vein) to assess plasma levels of letrozole. Letrozole was administered intravenously at doses of 4, 6, 8 and 12 mg/kg, and ECF and blood samples were collected over 8 h. For assessing normal versus tumoral brain pharmacokinetics, letrozole (4 or 8 mg/Kg; i.v.) was administered 10 days after implantation of C6 glioma in the brain. Dual-probe intracerebral microdialysis was employed for assessing ECF samples from tumor-free and tumor-bearing regions of the brain. RESULTS: Normal brain ECF and plasma C max and AUC0-8h increased linearly with letrozole doses up to 8 mg/kg dose, but at 12 mg/kg, the pharmacokinetics were nonlinear. The relative brain distribution coefficients, AUCECF/AUCplasma (ub), were 0.3-0.98. The tumoral uptake of letrozole was 1.5- to 2-fold higher relative to tumor-free region. CONCLUSIONS: Thus, letrozole permeability across the blood brain barrier is high, and the exposure to the brain is dose dependent. Furthermore, the brain tumoral letrozole levels are markedly higher than those in the tumor-free regions, which underscore potential selectivity of its activity against tumor cells.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/metabolism , Brain/metabolism , Glioma/metabolism , Nitriles/pharmacokinetics , Triazoles/pharmacokinetics , Algorithms , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Female , Humans , Letrozole , Microdialysis , Neoplasm Transplantation , Protein Binding , Rats , Rats, Sprague-Dawley
18.
Brain Res Bull ; 91: 52-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23318273

ABSTRACT

Recent studies have demonstrated that a preconditioning regimen (i.e., repeated low doses) of MDMA provides protection against the reductions in tissue concentrations of 5-HT and 5-HT transporter (SERT) density and/or expression produced by a subsequent binge regimen of MDMA. In the present study, the effects of preconditioning and binge treatment regimens of MDMA on SERT function were assessed by synaptosomal 5-HT uptake. Synaptosomal 5-HT uptake was reduced by 72% 7 days following the binge regimen (10 mg/kg, i.p. every 2 h for a total of 4 injections). In rats exposed to the preconditioning regimen of MDMA (daily treatment with 10 mg/kg for 4 days), the reduction in synaptosomal 5-HT uptake induced by a subsequent binge regimen was significantly less. Treatment with the preconditioning regimen alone resulted in a transient 46% reduction in 5-HT uptake that was evident 1 day, but not 7 days, following the last injection of MDMA. Furthermore, the preconditioning regimen of MDMA did not alter tissue concentrations of 5-HT, whereas the binge regimen of MDMA resulted in a long-term reduction of 40% of tissue 5-HT concentrations. The distribution of SERT immunoreactivity (ir) in membrane and endosomal fractions of the hippocampus also was evaluated following the preconditioning regimen of MDMA. There was no significant difference in the relative distribution of SERTir between these two compartments in control and preconditioned rats. The results demonstrate that SERT function is transiently reduced in response to a preconditioning regimen of MDMA, while long-term reductions in SERT function occur in response to a binge regimen of MDMA. Moreover, a preconditioning regimen of MDMA provides protection against the long-term reductions in SERT function evoked by a subsequent binge regimen of the drug. It is tempting to speculate that the neuroprotective effect of MDMA preconditioning results from a transient down-regulation in SERT function.


Subject(s)
Brain Chemistry/drug effects , Hallucinogens/administration & dosage , N-Methyl-3,4-methylenedioxyamphetamine/administration & dosage , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Blotting, Western , Brain Chemistry/physiology , Chromatography, High Pressure Liquid , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/drug effects , Synaptosomes/metabolism
19.
Med Hypotheses ; 80(3): 252-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23265349

ABSTRACT

We hypothesize the interaction between antipsychotic medications and regulation of extracellular glutamate which has gone largely unnoticed in the medical community has significant clinical importance. Typical antipsychotic medications such as haloperidol elevate extracellular glutamate because they exert antagonist effects on dopamine D(2) and serotonin 5HT(1A) receptors. In contrast, serotonin 5HT(2A) receptor antagonists inhibit glutamate release. Glutamate is potentially excitotoxic through effects on ionotropic receptor channels and may exert synergistic effects with other neurotoxic pathways. In contrast to typical antipsychotic drugs, pharmacological properties of atypical antipsychotic medications at dopamine D(2), serotonin 5HT(1A) and 5HT(2A) receptors limit extracellular glutamate and may theoretically be neuroprotective in certain clinical settings. In this review we discuss three common clinical settings in which typical antipsychotic medications may potentiate neurotoxicity by elevating extracellular glutamate. The most common clinical setting, hypoglycemia during combined use of antipsychotic medications and insulin, presents a theoretical risk for 35 million diabetic patients worldwide using antipsychotic medications. Antipsychotic medication treatment during hypoxic episodes in the intensive care unit and following traumatic brain injury are two other common clinical settings in which this interaction poses theoretical risk. Further study is needed to test hypothesized risk mechanisms, and determine clinical and epidemiological consequences of these exposures.


Subject(s)
Antipsychotic Agents/therapeutic use , Cell Death , Glutamic Acid/metabolism , Antipsychotic Agents/pharmacology , Humans
20.
J Neuroimmune Pharmacol ; 8(1): 58-65, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23179355

ABSTRACT

3,4-Methylenedioxymethamphetamine (MDMA; Ecstasy) is a popular drug of abuse with well-documented acute effects on serotonergic, dopaminergic, and cholinergic transmitter systems, as well as evidence of long-term disruption of serotoninergic systems in the rat brain. Recently, it was demonstrated that MDMA evokes a delayed and sustained increase in glutamate release in the hippocampus. The purpose of the present study was to determine the role of inflammatory mediators in the MDMA-induced increase in glutamate release, as well as the contribution of inflammatory pathways in the persistent neurochemical toxicity associated with repeated MDMA treatment. Treatment with the non-selective cyclooxygenase (COX) inhibitor ketoprofen and the COX-2 selective inhibitor nimesulide attenuated the increase in extracellular glutamate in the hippocampus evoked by repeated MDMA exposure (10 mg/kg, i.p., every 2 h); no attenuation was observed in rats treated with the COX-1 selective inhibitor piroxicam. Reverse dialysis of a major product of COX activity, prostaglandin E2, also resulted in a significant increase in extracellular glutamate in the hippocampus . Repeated exposure to MDMA diminished the number of parvalbumin-positive GABA interneurons in the dentate gyrus of the hippocampus, an effect that was attenuated by ketoprofen treatment. However, COX inhibition with ketoprofen did not prevent the long-term depletion of 5-HT in the hippocampus evoked by MDMA treatment. These data are supportive of the view that cyclooxygenase activity contributes to the mechanism underlying both the increased release of glutamate and decreased number of GABA interneurons in the rat hippocampus produced by repeated MDMA exposure.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Glutamic Acid/metabolism , Hippocampus/cytology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Parvalbumins/metabolism , Prostaglandin-Endoperoxide Synthases/physiology , gamma-Aminobutyric Acid/physiology , Animals , Cell Count , Chromatography, High Pressure Liquid , Cyclooxygenase Inhibitors/pharmacology , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Dinoprostone/metabolism , Hippocampus/drug effects , Hippocampus/enzymology , Immunohistochemistry , Interneurons/drug effects , Ketoprofen/pharmacology , Male , Microdialysis , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Serotonin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...