Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 426(24): 3960-3972, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25158095

ABSTRACT

In enzymes that regulate chromatin structure, the combinatorial occurrence of modules that alter and recognise histone modifications is a recurrent feature. In this study, we explored the functional relationship between the acetyltransferase domain and the adjacent bromodomain/PHD finger (bromo/PHD) region of the transcriptional coactivator p300. We found that the bromo/PHD region of p300 can bind to the acetylated catalytic domain in vitro and augment the catalytic activity of the enzyme. Deletion of the PHD finger, but not the bromodomain, impaired the ability of the enzyme to acetylate histones in vivo, whilst it enhanced p300 self-acetylation. A point mutation in the p300 PHD finger that is related to the Rubinstein-Taybi syndrome resulted in increased self-acetylation but retained the ability to acetylate histones. Hence, the PHD finger appears to negatively regulate self-acetylation. Furthermore, our data suggest that the PHD finger has a role in the recruitment of p300 to chromatin.


Subject(s)
E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Histones/metabolism , Protein Structure, Tertiary , Acetylation , Binding Sites/genetics , Biocatalysis , E1A-Associated p300 Protein/genetics , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Immunohistochemistry , Microscopy, Fluorescence , Models, Molecular , Point Mutation , Protein Binding
2.
Nat Commun ; 5: 3905, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24844197

ABSTRACT

Elucidation of macroevolutionary transitions between diverse animal body plans remains a major challenge in evolutionary biology. We address the sponge-eumetazoan transition by analyzing expression of a broad range of eumetazoan developmental regulatory genes in Sycon ciliatum (Calcispongiae). Here we show that many members of surprisingly numerous Wnt and Tgfß gene families are expressed higher or uniquely in the adult apical end and the larval posterior end. Genes involved in formation of the eumetazoan endomesoderm, such as ß-catenin, Brachyury and Gata, as well as germline markers Vasa and Pl10, are expressed during formation and maintenance of choanoderm, the feeding epithelium of sponges. Similarity in developmental gene expression between sponges and eumetazoans, especially cnidarians, is consistent with Haeckel's view that body plans of sponges and cnidarians are homologous. These results provide a framework for further studies aimed at deciphering ancestral developmental regulatory networks and their modifications during animal body plans evolution.


Subject(s)
Body Patterning/genetics , Cnidaria/genetics , Gene Expression Regulation, Developmental/genetics , Porifera/genetics , Animals , Base Sequence , Fetal Proteins/genetics , GATA Transcription Factors/genetics , Molecular Sequence Data , T-Box Domain Proteins/genetics , Transforming Growth Factor beta/genetics , Wnt Proteins/genetics , beta Catenin/genetics
3.
Evodevo ; 3(1): 14, 2012 Jul 23.
Article in English | MEDLINE | ID: mdl-22824100

ABSTRACT

BACKGROUND: Sox genes are HMG-domain containing transcription factors with important roles in developmental processes in animals; many of them appear to have conserved functions among eumetazoans. Demosponges have fewer Sox genes than eumetazoans, but their roles remain unclear. The aim of this study is to gain insight into the early evolutionary history of the Sox gene family by identification and expression analysis of Sox genes in the calcareous sponge Sycon ciliatum. METHODS: Calcaronean Sox related sequences were retrieved by searching recently generated genomic and transcriptome sequence resources and analyzed using variety of phylogenetic methods and identification of conserved motifs. Expression was studied by whole mount in situ hybridization. RESULTS: We have identified seven Sox genes and four Sox-related genes in the complete genome of Sycon ciliatum. Phylogenetic and conserved motif analyses showed that five of Sycon Sox genes represent groups B, C, E, and F present in cnidarians and bilaterians. Two additional genes are classified as Sox genes but cannot be assigned to specific subfamilies, and four genes are more similar to Sox genes than to other HMG-containing genes. Thus, the repertoire of Sox genes is larger in this representative of calcareous sponges than in the demosponge Amphimedon queenslandica. It remains unclear whether this is due to the expansion of the gene family in Sycon or a secondary reduction in the Amphimedon genome. In situ hybridization of Sycon Sox genes revealed a variety of expression patterns during embryogenesis and in specific cell types of adult sponges. CONCLUSIONS: In this study, we describe a large family of Sox genes in Sycon ciliatum with dynamic expression patterns, indicating that Sox genes are regulators in development and cell type determination in sponges, as observed in higher animals. The revealed differences between demosponge and calcisponge Sox genes repertoire highlight the need to utilize models representing different sponge lineages to describe sponge development, a prerequisite for deciphering evolution of metazoan developmental mechanisms.

4.
Nature ; 464(7288): 592-6, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20228792

ABSTRACT

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.


Subject(s)
Genome/genetics , Hydra/genetics , Animals , Anthozoa/genetics , Comamonadaceae/genetics , DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Hydra/microbiology , Hydra/ultrastructure , Molecular Sequence Data , Neuromuscular Junction/ultrastructure
5.
Proc Natl Acad Sci U S A ; 104(9): 3249-54, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17360633

ABSTRACT

Signaling centers or organizers play a key role in axial patterning processes in animal embryogenesis. The function of most vertebrate organizers involves the activity of secreted antagonists of bone morphogenetic proteins (BMPs) such as Chordin or Noggin. Although BMP homologs have been isolated from many phyla, the evolutionary origin of the antagonistic BMP/Chordin system in organizer signaling is presently unknown. Here we describe a Chordin-like molecule (HyChdl) from Hydra that inhibits BMP activity in zebrafish embryos and acts in Hydra axis formation when new head organizers are formed during budding and regeneration. hychdl transcripts are also up-regulated in the head regeneration-deficient mutant strain reg-16. Accordingly, HyChdl has a function in organizer formation, but not in head differentiation. Our data indicate that the BMP/Chordin antagonism is a basic property of metazoan signaling centers that was invented in early metazoan evolution to set up axial polarity.


Subject(s)
Body Patterning/genetics , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Glycoproteins/genetics , Hydra/embryology , Hydra/genetics , Intercellular Signaling Peptides and Proteins/genetics , Zebrafish/embryology , Animals , Biological Evolution , Body Patterning/physiology , Bone Morphogenetic Proteins/antagonists & inhibitors , Cloning, Molecular , DNA Primers , Glycoproteins/pharmacology , In Situ Hybridization , Intercellular Signaling Peptides and Proteins/pharmacology , Microinjections , Mutation/genetics , Organizers, Embryonic/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Zebrafish/metabolism
6.
Development ; 133(5): 901-11, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16452091

ABSTRACT

The dickkopf (dkk) gene family encodes secreted antagonists of Wnt signalling proteins, which have important functions in the control of cell fate, proliferation, and cell polarity during development. Here, we report the isolation, from a regeneration-specific signal peptide screen, of a novel dickkopf gene from the fresh water cnidarian Hydra. Comparative sequence analysis demonstrates that the Wnt antagonistic subfamily Dkk1/Dkk2/Dkk4 and the non-modulating subfamily Dkk3 separated prior to the divergence of cnidarians and bilaterians. In steady-state Hydra, hydkk1/2/4-expression is inversely related to that of hywnt3a. hydkk1/2/4 is an early injury and regeneration responsive gene, and hydkk1/2/4-expressing gland cells are essential for head regeneration in Hydra, although once the head has regenerated they are excluded from it. Activation of Wnt/beta-Catenin signalling leads to the complete downregulation of hydkk1/2/4 transcripts. When overexpressed in Xenopus, HyDkk1/2/4 has similar Wnt-antagonizing activity to the Xenopus gene Dkk1. Based on the corresponding expression patterns of hydkk1/2/4 and neuronal genes, we suggest that the body column of Hydra is a neurogenic environment suppressing Wnt signalling and facilitating neurogenesis.


Subject(s)
Evolution, Molecular , Hydra/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Regeneration , Wnt Proteins/antagonists & inhibitors , Amino Acid Sequence , Animals , Benzazepines/pharmacology , Cell Lineage , Endoderm/cytology , Endoderm/metabolism , Hydra/drug effects , Hydra/metabolism , Indoles/pharmacology , Intercellular Signaling Peptides and Proteins/classification , Intercellular Signaling Peptides and Proteins/genetics , Molecular Sequence Data , Phylogeny , Regeneration/genetics , Stem Cells/cytology , Stem Cells/metabolism , Wnt Proteins/metabolism , Xenopus
7.
J Mol Biol ; 342(2): 515-24, 2004 Sep 10.
Article in English | MEDLINE | ID: mdl-15327951

ABSTRACT

An unresolved question concerns the nuclear localization of the heterotrimeric CCAAT-binding complex, which is evolutionarily conserved in eukaryotic organisms including fungi, plants and mammals. All three subunits are necessary for DNA binding. In the filamentous fungus Aspergillus nidulans the corresponding complex was designated AnCF (A.nidulans CCAAT-binding factor). AnCF consists of the HapB, HapC and HapE subunits. Here, by using various green fluorescent protein constructs, a nuclear localization signal sequence (NLS) of the HapB protein was identified, outside of the evolutionarily conserved domain. HapB-EGFP was transported into the nucleus in both DeltahapC and DeltahapE strains, indicating that its NLS interacts with the import machinery independently of the other Hap subunits. In contrast, HapC-EGFP did not enter the nucleus in the absence of HapE or HapB. A similar finding was made for HapE-EGFP, which did not localize to the nucleus in the absence of HapC or HapB. Addition of the HapB-NLS to either HapC or HapE led to nuclear localization of the respective protein fusions, indicating that both HapC and HapE lack a functional NLS. Furthermore, these data strongly suggest that HapC and HapE have first to form a heterodimer and can be transported only as a heterodimer via the HapB protein into the nucleus. Therefore, the HapB subunit is the primary cargo for the import machinery, while HapC and HapE are transported to the nucleus only as a heterodimer and in complex with HapB via a piggy back mechanism. This enables the cell to provide equimolar concentrations of all subunits to the nucleus.


Subject(s)
CCAAT-Binding Factor/metabolism , Cell Nucleus/metabolism , Protein Sorting Signals/physiology , Protein Transport/physiology , Amino Acid Sequence , Aspergillus nidulans/chemistry , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Base Sequence , CCAAT-Binding Factor/chemistry , CCAAT-Binding Factor/genetics , Fungal Proteins , Genes, Reporter , Molecular Sequence Data , Protein Sorting Signals/genetics , Protein Transport/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...