Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(3): e14572, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36994405

ABSTRACT

In recent years, soil pollution by massive accumulation of heavy metals (HMs), microplastics, and refractory hydrocarbon chemicals has become an emerging and global concern, drawing worldwide attention. These pollutants influence soil diversity by hindering the reproduction, abundance, thereby affecting aboveground productivity. The scientific community has recently emphasized the contribution of earthworms to heavy metal accumulation, microplastic degradation, and the decomposition of organic matter in the soil, which helps maintain the soil structure. This review paper aimed to compile scientific facts on how earthworms cope with the effect of HMs, microplastics, and plant polyphenols so that vermiremediation could be widely applied for well-being of the soil ecosystem by environmentalists. Earthworms have special surface-active metabolites in their guts called drilodefensins that help them defend themselves against the oxidative action of plant polyphenols. They also combat the effects of toxic microplastics, and other oxidative compounds by elevating the antioxidant activities of their enzymes and converting them into harmless compounds or useful nutrients. Moreover, earthworms also act as biofilters, bioindicators, bioaccumulators, and transformers of oxidative polyphenols, microplastics, toxic HMs, and other pollutant hydrocarbons. Microorganisms (fungi and bacteria) in earthworms' gut of also assist in the fixation, accumulation, and transformation of these toxicants to prevent their effects. As a potential organism for application in ecotoxicology, it is recommended to propagate earthworms in agricultural fields; isolate, and culture enormously in industry, and inoculate earthworms in the polluted soil, thereby abate toxicity and minimizing the health effect caused by these pollutants as well enhance the productivity of crops.

2.
Plants (Basel) ; 11(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36501392

ABSTRACT

In recent decades, organic kiwifruit farming has come up as a feasible method for high-quality kiwi production without using chemical fertilizers. The primary objective of this research was to investigate how the sole application of organic and the combined application of organic manures affected the growth, yields, and quality of Allison kiwifruit, as well as the soil's physicochemical characteristics. The field trial was conducted on cv. Allison to determine the efficacy of organic manures (OM) on growth, nutrient absorption, production and soil health. The experiment involved eight treatments, viz.: T1: 100% Dairy manure (DM); T2: 100% Vermicompost (VC); T3: 100% chicken manure (CM); T4: 50% DM + 50% CM; T5: 50% DM + 50% VC; T6: 50% CM + 50% VC; T7: DM + CM + VC in equal proportions; and T8: Recommended nutrients inorganic NPK + 40 kg DM. A randomized complete block design comprising three replicas was used in this investigation. The use of inorganic fertilizers (NPK) in combination with DM enhanced Spad Values Chlorophyll, fruit production, leaf number, leaf area, and stem diameter while also improving the soil's chemical characteristics. The flower initiation was recorded with DM and Vermicompost (50:50). Furthermore, when compared to inorganic fertilizer treatment, OM treatment significantly improved fruit quality by improving fruit chemical composition in terms of soluble solids contents and leaf nutrient status, as well as improving soil's physical properties with DM and Vermicompost (50:50). The study's outcome revealed that OM had a significant impact on flowering time, fruit SSC, leaf nutritional status, and soil physical characteristics. In comparison to organic treatments, recommended fertilizer dosages (NPK + DM) improved plant growth, fruit yield, and soil chemical characteristics.

3.
Molecules ; 26(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34834102

ABSTRACT

Carissa, a genus of the Apocynaceae family, consists of evergreen species, such as shrubs as well as small trees that are native to Asia, Africa, and Oceania's subtropical and tropical regions. Most of the Carissa species are traditionally used to treat various diseases, such as chest pain, headaches, gonorrhoea, rheumatism, syphilis, oedema, rabies, stomach pain, hepatitis, cardiac diseases, and asthma. The pharmacological studies on Carissa species revealed its antioxidant, antimicrobial, anticancer, cardioprotective, antipyretic, analgesic, wound healing, anticonvulsant, antiarthritic, adaptogenic, anti-inflammatory, and antidiabetic activities, thus validating its use in indigenous medicine systems. The review article summarised the comprehensive literature available, including morphology, indigenous uses, bioactive composition, nutraceutical, and pharmacological activities of Carissa species. A total of 155 research papers were cited in this review article. The Carissa fruits are rich in dietary fibre, lipids, proteins, carbohydrates, vitamin C, and macro- and micro-elements. A total of 121 compounds (35 polyphenols (flavonoids and phenolic acids), 30 lignans, 41 terpenoids, 7 steroids, 2 coumarins, and 6 cardiac glycosides) have been extracted from C. spinarum, C. carandas, and C. macrocarpa. Among all chemical constituents, lupeol, carissol, naringin, carisssone, scopoletin, carissaeduloside A, D, J, carandinol, sarhamnoloside, carissanol, olivil, carinol, 3ß-hydroxyolean-11-en-28,13ß-oilde, ursolic acid, and carissone are the key bioactive constituents responsible for pharmacological activities of genus Carissa. The gathered ethnopharmacological information in the review will help to understand the therapeutic relevance of Carissa as well as paving a way for further exploration in the discovery of novel plant-based drugs.


Subject(s)
Apocynaceae/chemistry , Dietary Supplements , Ethnopharmacology , Phytochemicals , Plants, Medicinal/chemistry , Africa , Animals , Asia , Humans , Phytochemicals/chemistry , Phytochemicals/therapeutic use
4.
Heliyon ; 7(3): e06434, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732941

ABSTRACT

Vermiwash is a liquid extract produced from vermicompost in a medium where earthworms are richly populated. It comprises a massive decomposer bacteria count, mucus, vitamins, different bioavailable minerals, hormones, enzymes, different antimicrobial peptides, etc. This paper aimed to assess how these natural products in vermiwash suppressed the pathogen and pests. Thus, we have reviewed the importance of vermiwash/vermicompost in disease control, the mechanism of disease suppression, the components of vermiwash applied in disease suppression, and pest control to use the scientific facts in agriculture to enhance the productivity of the crops. The bioactive macromolecules from the skin secretion of earthworm, coelomic fluid, and mucus directly able to defend pathogenic soil microbes against the worm and thereby freed the environment from the disease. Earthworms establish symbiotic relations with microbes, produce an essential product that supports the growth of plants, and suppress plant's root disease. It is recomended that earthworm should be inoculated in an agricultural field, or prepare and apply its vermiwash/vermicompost as a spray or as additive bio-fertilizer in the soil to enhance the productivities of the crops.

SELECTION OF CITATIONS
SEARCH DETAIL
...