Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(11): e49387, 2012.
Article in English | MEDLINE | ID: mdl-23185324

ABSTRACT

Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).


Subject(s)
Caenorhabditis elegans Proteins/classification , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Computational Biology/methods , Multigene Family , rab GTP-Binding Proteins/classification , rab GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Clone Cells , Conserved Sequence/genetics , Humans , Introns/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Phylogeny , RNA Splicing/genetics , Reproducibility of Results , Sequence Alignment , rab GTP-Binding Proteins/chemistry
2.
J Cyst Fibros ; 11(6): 502-10, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22608296

ABSTRACT

INTRODUCTION: Fifteen to sixty percent of cystic fibrosis patients harbor Aspergillus fumigatus (Af) in their airways (CF-AC) and some will develop allergic bronchopulmonary aspergillosis (CF-ABPA). Since basophils play a key role in allergy, we hypothesized that they would display alterations in CF-ABPA patients compared to CF-AC or patients without Af colonization (CF). METHODS: Using flow cytometry, we measured CD203c, CD63 and CD123 levels on basophils from CF-ABPA (N=11), CF-AC (N=14), and CF (N=12) patients before and after ex vivo stimulation with Af allergens. RESULTS: Baseline CD203c was increased in basophils from CF-ABPA compared to CF-AC and CF patients. Af extract and recombinant Aspf1 stimulated basophils from CF-ABPA patients to markedly upregulate CD203c, along with modest upregulation of CD63 and a CD123 downward trend. Plasma TARC/CCL17 at baseline and post-stimulation cell supernatant histamine levels were similar in the three groups. CONCLUSIONS: In CF-ABPA, blood basophils are primed and hyperresponsive to Af allergen stimulation.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary/immunology , Aspergillus fumigatus/immunology , Basophils/immunology , Cystic Fibrosis/immunology , Adolescent , Adult , Allergens/immunology , Allergens/pharmacology , Antigens, Fungal/immunology , Basophils/cytology , Basophils/metabolism , Cell Degranulation/immunology , Chemokine CCL17/blood , Child , Cystic Fibrosis/microbiology , Female , Flow Cytometry , Fungal Proteins/immunology , Fungal Proteins/pharmacology , Humans , Interleukin-3 Receptor alpha Subunit/metabolism , Male , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Recombinant Proteins/immunology , Tetraspanin 30/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...