Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Rep ; 20(3): 42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343657

ABSTRACT

Combining chemotherapy and hormone therapy is a prevalent approach in breast cancer treatment. While the cytotoxic impact of numerous chemotherapy drugs stems from DNA damage, the exact role of these DNA alterations in modulating estrogen receptor α (ERα) machinery remains elusive. The present study aimed to analyze the impact of DNA damage agents on ERα signaling in breast cancer cells and assess the signaling pathways mediating the influence of DNA damage drugs on the ERα machinery. Cell viability was assessed using the MTT method, while the expression of signaling proteins was analyzed by immunoblotting. ERα activity in the cells treated with various drugs (17ß-estradiol, tamoxifen, 5-fluorouracil) was assessed through reporter gene assays. In vitro experiments were conducted on MCF7 breast cancer cells subjected to varying durations of 5-fluorouracil (5-FU) treatment. Two distinct cell responses to 5-FU were identified based on the duration of the treatment. A singular dose of 5-FU induces pronounced DNA fragmentation, temporally suppressing ERα signaling while concurrently activating AKT phosphorylation. This suppression reverses upon 5-FU withdrawal, restoring normalcy within ten days. However, chronic 5-FU treatment led to the emergence of 5-FU-resistant cells with irreversible alterations in ERα signaling, resulting in partial hormonal resistance. These changes mirror those observed in cells subjected to UV-induced DNA damage, underscoring the pivotal role of DNA damage in shaping estrogen signaling alterations in breast cancer cells. In summary, the results of the present study suggested that the administration of DNA damage agents to cancer cells can trigger irreversible suppression of estrogen signaling, fostering the development of partial hormonal resistance. This outcome may ultimately impede the efficacy of combined or subsequent chemo- and hormone therapy strategies.

2.
Bioimpacts ; 13(4): 313-321, 2023.
Article in English | MEDLINE | ID: mdl-37645026

ABSTRACT

Introduction: Resistance to chemotherapy and/or irradiation remains one of the key features of malignant tumors, which largely limits the efficiency of antitumor therapy. In this work, we studied the progression mechanism of breast cancer cell resistance to target drugs, including mTOR blockers, and in particular, we studied the exosome function in intercellular resistance transfer. Methods: The cell viability was assessed by the MTT assay, exosomes were purified by successive centrifugations, immunoblotting was used to evaluate protein expression, AP-1 activity was analyzed using reporter assay. Results: In experiments on the MCF-7 cell line (breast cancer) and the MCF-7/Rap subline that is resistant to rapamycin, the capability of resistant cell exosomes to trigger a similar rapamycin resistance in the parent MCF-7 cells was demonstrated. Exosome-induced resistance reproduces the changes revealed in MCF-7/Rap resistant cells, including the activation of ERK/AP-1 signaling, and it remains for a long time, for at least several months, after exosome withdrawal. We have shown that both the MCF-7 subline resistant to rapamycin and cells having exosome-triggered resistance demonstrate a stable decrease in the expression of DNMT3A, the key enzyme responsible for DNA methylation. Knockdown of DNMT3A in MCF-7 cells by siRNA leads to partial cell resistance to rapamycin; thus, the DNMT3A suppression is regarded as one of the necessary elements for the development of acquired rapamycin resistance. Conclusion: We propose that DNA demethylation followed by increased expression of key genes may be one of the factors responsible for the progression and maintenance of the resistant cell phenotype that includes exosome-induced resistance.

3.
Molecules ; 26(21)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34771077

ABSTRACT

Hormone therapy is one of the most effective breast cancer treatments, however, its application is limited by the progression of hormonal resistance, both primary or acquired. The development of hormonal resistance is caused either by an irreversible block of hormonal signalling (suppression of the activity or synthesis of hormone receptors), or by activation of oestrogen-independent signalling pathways. Recently the effect of exosome-mediated intercellular transfer of hormonal resistance was revealed, however, the molecular mechanism of this effect is still unknown. Here, the role of exosomal miRNAs (microRNAs) in the transferring of hormonal resistance in breast cancer cells has been studied. The methods used in the work include extraction, purification and RNAseq of miRNAs, transfection of miRNA mimetics, immunoblotting, reporter analysis and the MTT test. Using MCF7 breast cancer cells and MCF7/T tamoxifen-resistant sub-line, we have found that some miRNAs, suppressors of oestrogen receptor signalling, are overexpressed in the exosomes of the resistant breast cancer cells. The multiple (but not single) transfection of one of the identified miRNA, miR-181a-2, into oestrogen-dependent MCF7 cells induced the irreversible tamoxifen resistance associated with the continuous block of the oestrogen receptor signalling and the activation of PI3K/Akt pathway. We suppose that the miRNAs-ERα suppressors may act as trigger agents inducing the block of oestrogen receptor signalling and breast cancer cell transition to an aggressive oestrogen-independent state.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Breast Neoplasms/drug therapy , Estrogen Receptor alpha/antagonists & inhibitors , Exosomes/drug effects , MicroRNAs/antagonists & inhibitors , Tamoxifen/pharmacology , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Exosomes/genetics , Exosomes/metabolism , Female , Humans , MCF-7 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/drug effects
4.
Molecules ; 26(9)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33922925

ABSTRACT

Exosomes are the small vesicles that are secreted by different types of normal and tumour cells and can incorporate and transfer their cargo to the recipient cells. The main goal of the present work was to study the tumour exosomes' ability to accumulate the parent mutant DNA or RNA transcripts with their following transfer to the surrounding cells. The experiments were performed on the MCF7 breast cancer cells that are characterized by the unique coding mutation in the PIK3CA gene. Using two independent methods, Sanger sequencing and allele-specific real-time PCR, we revealed the presence of the fragments of the mutant DNA and RNA transcripts in the exosomes secreted by the MCF7 cells. Furthermore, we demonstrated the MCF7 exosomes' ability to incorporate into the heterologous MDA-MB-231 breast cancer cells supporting the possible transferring of the exosomal cargo into the recipient cells. Sanger sequencing of the DNA from MDA-MB-231 cells (originally bearing a wild type of PIK3CA) treated with MCF7 exosomes showed no detectable amount of mutant DNA or RNA; however, using allele-specific real-time PCR, we revealed a minor signal from amplification of a mutant allele, showing a slight increase of mutant DNA in the exosome-treated MDA-MB-231 cells. The results demonstrate the exosome-mediated secretion of the fragments of mutant DNA and mRNA by the cancer cells and the exosomes' ability to transfer their cargo into the heterologous cells.


Subject(s)
Breast Neoplasms/genetics , Class I Phosphatidylinositol 3-Kinases/genetics , DNA, Neoplasm/genetics , Exosomes/genetics , Alleles , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mutation/genetics , RNA, Messenger/genetics
5.
Pharmaceuticals (Basel) ; 13(9)2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32825760

ABSTRACT

The phenomenon of the primary or acquired resistance of cancer cells to antitumor drugs is among the key problems of oncology. For breast cancer, the phenomenon of the resistance to hormonal or target therapy may be based on the numerous mechanisms including the loss or mutation of estrogen receptor, alterations of antiapoptotic pathways, overexpression of growth-related signaling proteins, etc. The perspective approaches for overcoming the resistance may be based on the usage of compounds such as inhibitors of the cell energetic metabolism. Among the latter, the antidiabetic drug metformin exerts antitumor activity via the activation of AMPK and the subsequent inhibition of mTOR signaling. The experiments were performed on the ERα-positive MCF-7 breast cancer cells, the MCF-7 sublines resistant to tamoxifen (MCF-7/T) and rapamycin (MCF-7/Rap), and on triple-negative MDA-MB-231 breast cancer cells. We have demonstrated metformin's ability to enhance the cytostatic activity of the tamoxifen and rapamycin on both parent MCF-7 cells and MCF-7-resistant derivates mediated via the suppression of mTOR signaling and growth-related transcriptional factors. The cooperative effect of metformin and tested drugs was realized in an estrogen-independent manner, and, in the case of tamoxifen, was associated with the activation of apoptotic cell death. Similarly, the stimulation of apoptosis under metformin/tamoxifen co-treatment was shown to occur in the MCF-7 cells after steroid depletion as well as in the ERα-negative MDA-MB-231 cells. We conclude that metformin co-treatment may be used for the increase and partial restoration of the cancer cell sensitivity to hormonal and target drugs. Moreover, the combination of metformin with tamoxifen induces the apoptotic death in the ERα-negative breast cancer cells opening the additional perspectives in the treatment of estrogen-independent breast tumors.

6.
Chem Biol Interact ; 330: 109243, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32861747

ABSTRACT

mTOR inhibitors are considered today to be one of the most promising anticancer drugs. Here to study the mechanism of the acquired resistance of MCF-7 breast cancer cells to mTOR inhibitors two different models of the cell resistance were used: rapamycin-resistant MCF-7/Rap subline developed under long-term rapamycin treatment, and metformin-resistant MCF-7/M subline obtained by long-term metformin treatment. We have found that both resistant sublines were characterized by common features: increased expression of mTOR-interacting Raptor protein, increased phosphorylation of Akt, and activation of growth-related transcriptional factor AP-1. Cell response to mTOR inhibitors was partially restored under treatment with PI3K inhibitor wortmannin supporting the direct connection between Akt activation and poor cell response to therapeutic drugs. Transfection of mir-181c, one of the positive regulators of Akt and mTOR, led to an increase in the cell resistance to both mTOR inhibitors, rapamycin and metformin, which correlated with Raptor overexpression and activation of Akt/AP-1 signaling. In general, the effect of Raptor overexpression in the resistant cells, as well as the ability of mir-181c to modulate the Raptor expression, can open novel perspectives in the treatment of rapalogues-resistant cancers, based on the drugs design targeting mir-181c/Raptor axis.


Subject(s)
Breast Neoplasms/pathology , Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-akt/metabolism , Regulatory-Associated Protein of mTOR/metabolism , Sirolimus/pharmacology , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , Humans , MCF-7 Cells , MicroRNAs/genetics , MicroRNAs/pharmacology , Signal Transduction , Up-Regulation/drug effects
7.
Molecules ; 23(4)2018 04 04.
Article in English | MEDLINE | ID: mdl-29617321

ABSTRACT

Exosomes are small vesicles which are produced by the cells and released into the surrounding space. They can transfer biomolecules into recipient cells. The main goal of the work was to study the exosome involvement in the cell transfer of hormonal resistance. The experiments were performed on in vitro cultured estrogen-dependent MCF-7 breast cancer cells and MCF-7 sublines resistant to SERM tamoxifen and/or biguanide metformin, which exerts its anti-proliferative effect, at least in a part, via the suppression of estrogen machinery. The exosomes were purified by differential ultracentrifugation, cell response to tamoxifen was determined by MTT test, and the level and activity of signaling proteins were determined by Western blot and reporter analysis. We found that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead to the partial resistance of the MCF-7 cells to antiestrogen drugs. The primary resistant cells and the cells with the exosome-induced resistance were characterized with these common features: decrease in ERα activity and parallel activation of Akt and AP-1, NF-κB, and SNAIL1 transcriptional factors. In general, we evaluate the established results as the evidence of the possible exosome involvement in the transferring of the hormone/metformin resistance in breast cancer cells.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor Modulators/pharmacology , Exosomes/metabolism , Breast Neoplasms/metabolism , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...