Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 115(35): 10000-8, 2011 Sep 08.
Article in English | MEDLINE | ID: mdl-21780826

ABSTRACT

The molecular structures of 1,4-, 1,3-, and 1,2-disilacyclohexanes (denoted as 14, 13, and 12, respectively) were investigated by means of gas electron diffraction (GED). Each molecule was found to possess a chair as the most stable conformation in the gas phase, the point group being C(2h), C(s), and C(2), respectively. Experimental GED structures are in good agreement with theoretical calculations (MP2/cc-pVTZ and B3LYP/cc-pVTZ). A qualitative ring strain analysis suggests 14 to be the most stable and 12 the least stable of the parent disilacyclohexanes. Relative energy calculations with the G4 model chemistry protocol, on the other hand, predict 13 to be the most stable isomer, 5.9 and 14.2 kcal/mol more stable than 14 and 12, respectively. The enhanced stability of 13 compared to 14 is in agreement with an analysis on endocyclic bond lengths and bond polarities. The heats of formation (G4 calculations) are predicted to be -12.3, -18.1, and -3.9 kcal/mol for 14, 13, and 12, respectively. The potential energy surface (PES) and the lowest energy path for the chair-to-chair inversion have been calculated for each isomer. In addition to the two chair forms in each case and some half-chair or sofa-like transition states (four in the case of 14, and two in the case of 13), there are two twist forms found as stationary points on the PES of 14, six twist and six boat forms on the PES of 13, and four twist and six boat forms on the PES of 12.

2.
Eur J Pharm Sci ; 42(5): 559-67, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21371556

ABSTRACT

Silicone elastomers are commonly used for medical devices and external prosthesis. Recently, there has been growing interest in silicone-based medical devices with enhanced function that release drugs from the elastomer matrix. In the current study, an experimental design approach was used to optimize the release properties of the model drug diclofenac from medical silicone elastomer matrix, including a combination of four permeation enhancers as additives and allowing for constraints in the properties of the material. The D-optimal design included six factors and five responses describing material properties and release of the drug. The first experimental object was screening, to investigate the main and interaction effects, based on 29 experiments. All excipients had a significant effect and were therefore included in the optimization, which also allowed the possible contribution of quadratic terms to the model and was based on 38 experiments. Screening and optimization of release and material properties resulted in the production of two optimized silicone membranes, which were tested for transdermal delivery. The results confirmed the validity of the model for the optimized membranes that were used for further testing for transdermal drug delivery through heat-separated human skin. The optimization resulted in an excipient/drug/silicone composition that resulted in a cured elastomer with good tensile strength and a 4- to 7-fold transdermal delivery increase relative to elastomer that did not contain excipients.


Subject(s)
Diclofenac/administration & dosage , Drug Carriers/chemistry , Silicone Elastomers/chemistry , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Chromatography, High Pressure Liquid , Diclofenac/chemistry , Diffusion , Excipients/chemistry , Female , Humans , In Vitro Techniques , Skin Absorption/drug effects , Solubility , Tensile Strength
3.
Org Lett ; 11(9): 2015-7, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19341264

ABSTRACT

Ring closure of 1,5-dibromo-1,5-disilapentane with methylene di-Grignard was the key step in the preparation of the parent 1,3-disilacyclohexane. For that purpose, the preparation of methylene di-Grignard has been improved and simplified. The successful synthesis of the isomeric 1,2- and 1,4-disilacyclohexanes is also reported.

4.
Chemistry ; 13(6): 1776-83, 2007.
Article in English | MEDLINE | ID: mdl-17121396

ABSTRACT

The molecular structure of axial and equatorial conformers of 1-trifluoromethyl-1-silacyclohexane, (C5H10SiHCF3), as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR) spectroscopy, and quantum chemical calculations (B3LYP, MP2, and CBS-QB3). According to GED, the compound exists as a mixture of two Cs symmetry conformers possessing the chair conformation of the six-membered ring and differing in the axial or equatorial position of the CF3 group (axial=58(12) mol%/equatorial=42(12) mol%) at T=293 K. This result is in a good agreement with the theoretical prediction. This is, however, in sharp contrast to the conformational properties of the cyclohexane analogue. The main structural feature for both conformers is the unusually long exocyclic bond length Si--C 1.934(10) A. A low-temperature 19F NMR experiment results in an axial/equatorial ratio of 17(2) mol%:83(2) mol% at 113 K and a DeltaG (not equal) of 5.5(2) kcal mol-1. CBS-QB3 calculations in the gas-phase and solvation effect calculations using the PCM(B3LYP/6-311G*) and IPCM(B3LYP/6-311G*) models were applied to estimate the axial/equatorial ratio in the 100-300 K temperature range, which showed excellent agreement with the experimental results. The minimum energy pathways for the chair-to-chair inversion of trifluoromethylsilacyclohexane and methylsilacyclohexane were also calculated using the STQN(Path) method.

5.
J Org Chem ; 67(11): 3827-31, 2002 May 31.
Article in English | MEDLINE | ID: mdl-12027699

ABSTRACT

The molecular structure of 1-methyl-1-silacyclohexane 3 has been determined by gas electron diffraction (GED). The conformational preference of the methyl group was studied experimentally in the gas phase (GED) and in solution (low-temperature (13)C NMR) and by quantum chemical calculations (HF, MP2, and B3LYP with 6-31G basis sets and mPW1PW91/6-311G(2df,p)). Both experimental methods result in a preference of the equatorial position of the methyl group, 68(7)% in the gas phase at 298 K and 74(1)% in solution at 110 K. The calculations predict 68-73% equatorial conformer at room temperature. From coalescence temperatures, Gibbs free energies of activation for ring inversion DeltaG++ (eq --> ax) = 5.81(18) and DeltaG++ (ax --> eq) = 5.56(18) kcal mol(-1) were derived. The calculated values for DeltaG++ (eq --> ax) are 5.92 (B3LYP) and 5.84 kcal mol(-1) (mPW1PW91).

SELECTION OF CITATIONS
SEARCH DETAIL
...