Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 681: 115328, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37722524

ABSTRACT

ZnO nanoparticles (NPs) with a flower-like morphology, synthesized by an affordable colloidal route using an aqueous fungi extract of Ganoderma lucidum as a reducing agent and stabilizer, are investigated as SERS-substrate. Each "flower" has large effective surface that is preserved at packing particles into a dense film and thus exhibits an advantageous property for SERS and similar sensing applications. The mycoextract used in our low-cost and green synthesis as surface stabilizer allows subsequent deposition of metal NPs or layers. One type of SERS substrates studied here was ZnO NPs decorated in situ in the solution by Ag NPs, another type was prepared by thermally evaporating Ag layer on the ZnO NP film on a substrate. A huge difference in the enhancement of the same analyte in the solution and in the dried form is found and discussed. Detection down to 10-7 M of standard dye analytes such as rhodamine 6G and methylene blue was achieved without additional optimization of the SERS substrates. The observed SERS-activity demonstrate the potential of both the free-standing flower-like ZnO NPs and thereof made dense films also for other applications where large surface area accessible for the external agent is crucial, such as catalysis or sensing.

2.
RSC Adv ; 13(1): 756-763, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36683769

ABSTRACT

Fungi produce and excrete various proteins, enzymes, polysaccharides, and secondary metabolites, which may be used as media for the "green" synthesis of metal and semiconductor nanoparticles (NPs). ZnO NPs with a flower-like morphology were synthesized by an affordable colloidal route, using an aqueous extract of Ganoderma lucidum as a reducing agent and stabilizer. Each individual "flower" has a large effective surface, which is preserved when the particles are close packed into a dense film, which is advantageous for numerous applications. The phonon Raman spectrum and X-ray diffraction (XRD) pattern prove the high crystallinity of the NPs, with the distinct pattern of a hexagonal (wurtzite) lattice, negligible residual stress, and a crystallite size of 12-14 nm determined from the XRD. The photoluminescence (PL) spectrum of the as-synthesized ZnO NPs contains a structured defect-related feature in the violet-blue range, while the green PL, common for nanostructures synthesized by "green" routes, is very weak. By applying dimethylsulfoxide as an additional passivating agent, the excitonic (UV) PL band was activated without enhancement of the defect-related features. Ag NP-decorated ZnO flowers were synthesized by subsequent silver reduction by pepper extract. The ZnO/Ag NPs exhibited efficient surface-enhanced Raman scattering (SERS) of a standard dye analyte, rhodamine 6G, ensuring the feasibility of other applications that require close contact of ZnO/Ag to other nanostructures or molecules to realize the energy of the charge transfer.

3.
Nanoscale Res Lett ; 12(1): 320, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28472869

ABSTRACT

Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te (x ~ 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound (x ~ 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP ~ 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

SELECTION OF CITATIONS
SEARCH DETAIL
...