Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256229

ABSTRACT

Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Tumor Necrosis Factor-alpha , Animals , Mice , Cytokines/genetics , Mice, Knockout , Tumor Necrosis Factor-alpha/genetics , Orthomyxoviridae Infections/pathology
2.
Vaccines (Basel) ; 11(5)2023 May 18.
Article in English | MEDLINE | ID: mdl-37243102

ABSTRACT

The State Research Center of Virology and Biotechnology "VECTOR" of the Federal Service for the Oversight of Consumer Protection and Welfare (Rospotrebnadzor) has developed the peptide-based EpiVacCorona vaccine, which is the first synthetic peptide-based antiviral vaccine for mass immunization in international vaccinology. An early clinical trial (Phase I-II) demonstrated that the EpiVacCorona vaccine is a safe product. The "Multicenter double-blind, placebo-controlled, comparative, randomized trial to assess the tolerability, safety, immunogenicity and prophylactic efficacy of the EpiVacCorona COVID-19 vaccine based on peptide antigens in 3000 volunteers aged 18 years and older" was performed regarding vaccine safety. The key objectives of the study were to evaluate the safety and prophylactic efficacy of the two-dose EpiVacCorona vaccine administered via the intramuscular route. The results of the clinical study (Phase III) demonstrated the safety of the EpiVacCorona vaccine. Vaccine administration was accompanied by mild local reactions in ≤27% of cases and mild systemic reactions in ≤14% of cases. The prophylactic efficacy of the EpiVacCorona COVID-19 vaccine after the completion of the vaccination series was 82.5% (CI95 = 75.3-87.6%). The high safety and efficacy of the vaccine give grounds for recommending this vaccine for regular seasonal prevention of COVID-19 as a safe and effective medicinal product.

3.
Pathogens ; 11(11)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36422639

ABSTRACT

The circulation of seasonal influenza in 2020-2021 around the world was drastically reduced after the start of the COVID-19 pandemic and the implementation of mitigation strategies. The influenza virus circulation reemerged in 2021-2022 with the global spread of the new genetic clade 3C.2a1b.2a.2 of A(H3N2) viruses. The purpose of this study was to characterize influenza viruses in the 2021-2022 season in Russia and to analyze the receptor specificity properties of the 3C.2a1b.2a.2 A(H3N2) viruses. Clinical influenza samples were collected at the local Sanitary-and-Epidemiological Centers of Rospotrebnadzor. Whole genome sequencing was performed using NGS. The receptor specificity of hemagglutinin was evaluated using molecular modeling and bio-layer interferometry. Clinical samples from 854 cases of influenza A and B were studied; A(H3N2) viruses were in the majority of the samples. All genetically studied A(H3N2) viruses belonged to the new genetic clade 3C.2a1b.2a.2. Molecular modeling analysis suggested a higher affinity of hemagglutinin of 3C.2a1b.2a.2. A(H3N2) viruses to the α2,6 human receptor. In vitro analysis using a trisaccharide 6'-Sialyl-N-acetyllactosamine receptor analog did not resolve the differences in the receptor specificity of 3C.2a1b.2a.2 clade viruses from viruses belonging to the 3C.2a1b.2a.1 clade. Further investigation of the A(H3N2) viruses is required for the evaluation of their possible adaptive advantages. Constant monitoring and characterization of influenza are critical for epidemiological analysis.

4.
Antiviral Res ; 191: 105079, 2021 07.
Article in English | MEDLINE | ID: mdl-33933515

ABSTRACT

This study aimed to assess the antiviral susceptibility of influenza A(H5N8) viruses isolated in Russia in 2014-2018. Genetic analysis of 57 Russian isolates with full genome sequences did not find any markers of reduced susceptibility to baloxavir. Only one strain bore an amino acid substitution associated with adamantane resistance (M2-S31N). The neuraminidase of 1 strain had an NA-N293/294S (N8/N2 numbering) substitution associated with reduced inhibition by oseltamivir and normal inhibition by zanamivir, which was confirmed phenotypically. There were no other strains with reduced inhibition by oseltamivir and zanamivir in the phenotypic analysis. In order to estimate the worldwide prevalence of influenza A(H5N8) viruses bearing genetic markers of antiviral resistance, genome sequences deposited in the GISAID database were analyzed (database access: October 2020). The M2 protein of A(H5N8) viruses from the 2.3.4.4c clade had an M2-S31N substitution associated with reduced susceptibility to adamantanes. On the contrary, the majority (94%) of viruses from the 2.3.4.4b clade had the M2-S31 genotype. Fewer than 1% of analyzed viruses had amino acid substitutions associated with reduced susceptibility to baloxavir (PA-E199G, PA-E199E/G) or reduced or highly reduced inhibition by neuraminidase inhibitors (NA-R150/152K, NA-I221/222M, NA-I221/222I/M, NA-I221/222V, NA-I115/117V, NA-G145/147R, NA-R291/292R/K). An NA-N293/294S substitution was not present in sequences from the GISAID database. To the best of our knowledge, influenza A(H5N8) viruses with reduced inhibition by oseltamivir bearing an NA-N293/294S substitution have not been previously reported in epidemiological surveillance studies.


Subject(s)
Amino Acid Substitution/genetics , Antiviral Agents/pharmacology , Disease Outbreaks/veterinary , Influenza A Virus, H5N8 Subtype/drug effects , Influenza A Virus, H5N8 Subtype/genetics , Neuraminidase/genetics , Orthomyxoviridae Infections/veterinary , Oseltamivir/pharmacology , Poultry/virology , Animals , Drug Resistance, Viral/genetics , Farms/statistics & numerical data , Genetic Markers/genetics , Orthomyxoviridae Infections/epidemiology , Russia/epidemiology , Viral Proteins/genetics
5.
Front Mol Biosci ; 8: 821506, 2021.
Article in English | MEDLINE | ID: mdl-35118120

ABSTRACT

The novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation. Transgenic mice carrying hACE2 under the floxed STOP cassette [(hACE2-LoxP(STOP)] were mated with two types of Cre-ERT2 strains (UBC-Cre and Rosa-Cre). The resulting offspring with temporal control of transgene expression were treated with tamoxifen to induce the removal of the floxed STOP cassette, which prevented hACE2 expression. Before and after intranasal inoculation, the mice were weighed and clinically examined. On Days 5 and 10, the mice were sacrificed for isolation of internal organs and the further assessment of SARS-CoV-2 distribution. Intranasal SARS-CoV-2 inoculation in hACE2-LoxP(STOP)×UBC-Cre offspring resulted in weight loss and death in 6 out of 8 mice. Immunostaining and focus formation assays revealed the most significant viral load in the lung, brain, heart and intestine samples. In contrast, hACE2-LoxP(STOP) × Rosa-Cre offspring easily tolerated the infection, and SARS-CoV-2 was detected only in the brain and lungs, whereas other studied tissues had null or negligible levels of the virus. Histological examination revealed severe alterations in the lungs, and mild changes were observed in the brain tissues. Notably, no changes were observed in mice without tamoxifen treatment. Thus, this novel murine model with the Cre-dependent activation of hACE2 provides a useful and safe tool for COVID-19 studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...