Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18719, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907581

ABSTRACT

Bananas hold significant economic importance as an agricultural commodity, serving as a primary livelihood source, a favorite fruit, and a staple crop in various regions across the world. However, Banana bunchy top disease (BBTD), which is caused by banana bunchy top virus (BBTV), poses a considerable threat to banana cultivation. To understand the resistance mechanism and the interplay of host suitability factors in the presence of BBTV, we conducted RNA-seq-based comparative transcriptomics analysis on mock-inoculated and BBTV-inoculated samples from resistant (wild Musa balbisiana) and susceptible (Musa acuminata 'Lakatan') genotypes. We observed common patterns of expression for 62 differentially expressed genes (DEGs) in both genotypes, which represent the typical defense response of bananas to BBTV. Furthermore, we identified 99 DEGs exclusive to the 'Lakatan' banana cultivar, offering insights into the host factors and susceptibility mechanisms that facilitate successful BBTV infection. In parallel, we identified 151 DEGs unique to the wild M. balbisiana, shedding light on the multifaceted mechanisms of BBTV resistance, involving processes such as secondary metabolite biosynthesis, cell wall modification, and pathogen perception. Notably, our validation efforts via RT-qPCR confirmed the up-regulation of the glucuronoxylan 4-O-methyltransferase gene (14.28 fold-change increase), implicated in xylan modification and degradation. Furthermore, our experiments highlighted the potential recruitment of host's substrate adaptor ADO (30.31 fold-change increase) by BBTV, which may play a role in enhancing banana susceptibility to the viral pathogen. The DEGs identified in this work can be used as basis in designing associated gene markers for the precise integration of resistance genes in marker-assisted breeding programs. Furthermore, the findings can be applied to develop genome-edited banana cultivars targeting the resistance and susceptibility genes, thus developing novel cultivars that are resilient to important diseases.


Subject(s)
Babuvirus , Musa , Musa/genetics , Babuvirus/genetics , RNA-Seq , Plant Diseases/genetics , Plant Breeding , Genotype , DNA, Viral/genetics
2.
Mol Genet Genomics ; 298(4): 857-869, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37085697

ABSTRACT

The Philippines is situated in the geographic region regarded as the center of diversity of banana and its wild relatives (Musa spp.). It holds the most extensive collection of B-genome germplasm in the world along with A-genome groups and several natural hybrids with A- and B-genome combinations. Management of this germplasm resource has relied immensely on identification using local names and morphological characters, and the extent of genetic diversity of the collection has not been achieved with molecular markers. A high-throughput and reliable genotyping method for banana and its relatives will facilitate germplasm management and support breeding initiatives toward a marker-based approach. Here, we developed a 1 K SNP genotyping panel based on filtering of high-quality genome-wide SNPs from the Musa Germplasm Information System and used it to assess the genetic diversity and population structure of 183 accessions from a Musa spp. germplasm collection containing Philippine and foreign accessions. Targeted GBS using SeqSNP™ technology generated 70,376,284 next-generation sequencing (NGS) reads with an average effective target SNP coverage of 340 × . Bioinformatics pipeline revealed 971 polymorphic SNPs containing 76.9% homozygous calls, 23.1% heterozygous calls and 4% with missing data. A final set of 952 SNPs detected 2,092 alleles. Pairwise genetic distance varied from 0.0021 to 0.3325 with most pairs of accessions distinguished with 250 to 300 loci. The SNP panel was able to detect seven (k = 7) genetically differentiated groups and its composition through Principal Component Analysis (PCA) with k-means clustering algorithm and Discriminant Analysis of Principal Components (DAPC). Accession-specific SNPs were also identified. The 1 K SNP panel effectively distinguishes between genomic groups and provides relatively good resolution of genome-wide nucleotide diversity of Musa spp. This panel is recommended for low-density genotyping for application in marker-assisted breeding and germplasm management, and could be further enhanced to increase marker density for other applications like genetic association and genomic selection in bananas.


Subject(s)
Musa , Polymorphism, Single Nucleotide , Polymorphism, Single Nucleotide/genetics , Genotype , Musa/genetics , Plant Breeding , Genotyping Techniques , Genetic Variation/genetics
3.
Plant Dis ; 107(7): 1973-1978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36633389

ABSTRACT

Banana bunchy top disease (BBTD) is caused by banana bunchy top virus (BBTV), the most important virus affecting banana. Currently, no cultivar or accession of banana has complete resistance to BBTD. A total of 36 wild Musa spp. accessions, including 34 Musa balbisiana and 2 M. acuminata subsp. errans ("Agutay"), were screened for resistance against BBTV. In greenhouse tests using viruliferous banana aphids (Pentalonia nigronervosa), all M. balbisiana accessions remained symptomless, and BBTV was not detected in any of these plants by PCR at 3 and 6 months postinoculation. In contrast, 100% disease incidence was recorded in M. acuminata subsp. errans and in cv. Lakatan susceptible control plants. The PCR-negative M. balbisiana plants were then transferred to a field with high BBTV inoculum pressure where they remained symptomless and PCR-negative for up to 5 years, while all cv. Lakatan developed BBTD. Wild M. balbisiana accessions showed a high level of resistance and possibly immunity to BBTV and are expected to provide a resource for conventional and marker-assisted breeding.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Aphids , Babuvirus , Musa , Animals , Babuvirus/genetics , Philippines , Plant Diseases/prevention & control , Plant Breeding
4.
Conserv Physiol ; 10(1): coab099, 2022.
Article in English | MEDLINE | ID: mdl-35492425

ABSTRACT

The ability of seeds to withstand drying is fundamental to ex situ seed conservation but drying responses are not well known for most wild species including crop wild relatives. We look at drying responses of seeds of Musa acuminata and Musa balbisiana, the two primary wild relatives of bananas and plantains, using the following four experimental approaches: (i) We equilibrated seeds to a range of relative humidity (RH) levels using non-saturated lithium chloride solutions and subsequently measured moisture content (MC) and viability. At each humidity level we tested viability using embryo rescue (ER), tetrazolium chloride staining and germination in an incubator. We found that seed viability was not reduced when seeds were dried to 4% equilibrium relative humidity (eRH; equating to 2.5% MC). (ii) We assessed viability of mature and less mature seeds using ER and germination in the soil and tested responses to drying. Findings showed that seeds must be fully mature to germinate and immature seeds had negligible viability. (iii) We dried seeds extracted from ripe/unripe fruit to 35-40% eRH at different rates and tested viability with germination tests in the soil. Seeds from unripe fruit lost viability when dried and especially when dried faster; seeds from ripe fruit only lost viability when fast dried. (iv) Finally, we dried and re-imbibed mature and less mature seeds and measured embryo shrinkage and volume change using X-ray computer tomography. Embryos of less mature seeds shrank significantly when dried to 15% eRH from 0.468 to 0.262 mm3, but embryos of mature seeds did not. Based on our results, mature seeds from ripe fruit are desiccation tolerant to moisture levels required for seed genebanking but embryos from immature seeds are mechanistically less able to withstand desiccation, especially when water potential gradients are high.

6.
Ecol Evol ; 11(21): 14644-14657, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765131

ABSTRACT

Ecologically meaningful seed germination experiments are constrained by access to seeds and relevant environments for testing at the same time. This is particularly the case when research is carried out far from the native area of the studied species.Here, we demonstrate an alternative-the use of glasshouses in botanic gardens as simulated-natural habitats to extend the ecological interpretation of germination studies. Our focal taxa were banana crop wild relatives (Musa acuminata subsp. burmannica, Musa acuminata subsp. siamea, and Musa balbisiana), native to tropical and subtropical South-East Asia. Tests were carried out in Belgium, where we performed germination tests in relation to foliage-shading/exposure to solar radiation and seed burial depth, as well as seed survival and dormancy release in the soil. We calibrated the interpretation of these studies by also conducting an experiment in a seminatural habitat in a species native range (M. balbisiana-Los Baños, the Philippines), where we tested germination responses to exposure to sun/shade. Using temperature data loggers, we determined temperature dynamics suitable for germination in both these settings.In these seminatural and simulated-natural habitats, seeds germinated in response to exposure to direct solar radiation. Seed burial depth had a significant but marginal effect by comparison, even when seeds were buried to 7 cm in the soil. Temperatures at sun-exposed compared with shaded environments differed by only a few degrees Celsius. Maximum temperature of the period prior to germination was the most significant contributor to germination responses and germination increased linearly above a threshold of 23℃ to the maximum temperature in the soil (in simulated-natural habitats) of 35℃.Glasshouses can provide useful environments to aid interpretation of seed germination responses to environmental niches.

SELECTION OF CITATIONS
SEARCH DETAIL
...