Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Environ Monit Assess ; 196(4): 385, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507123

ABSTRACT

Soil quality monitoring in mining rehabilitation areas is a crucial step to validate the effectiveness of the adopted recovery strategy, especially in critical areas for environmental conservation, such as the Brazilian Amazon. The use of portable X-ray fluorescence (pXRF) spectrometry allows a rapid quantification of several soil chemical elements, with low cost and without residue generation, being an alternative for clean and accurate environmental monitoring. Thus, this work aimed to assess soil quality in mining areas with different stages of environmental rehabilitation based on predictions of soil fertility properties through pXRF along with four machine learning algorithms (projection pursuit regression, PPR; support vector machine, SVM; cubist regression, CR; and random forest, RF) in the Eastern Brazilian Amazon. Sandstone and iron mines in different chronological stages of rehabilitation (initial, intermediate, and advanced) were evaluated, in addition to non-rehabilitated and native forest areas. A total of 81 soil samples (26 from sandstone mine and 55 from iron mine) were analyzed by both traditional wet-chemistry methods and pXRF. The available/exchangeable contents of K, Ca, B, Fe, and Al, in addition to H+Al, cation exchange capacity at pH = 7, Al saturation, soil organic matter, pH, sum of bases, base saturation, clay, and sand were accurately predicted (R2 > 0.70) using pXRF data, with emphasis on the prediction of Fe (R2 = 0.93), clay content (R2 = 0.81), H+Al (R2 = 0.81), and K+ (R2 = 0.85). The best predictive models were developed by RF and CR (86%) and when considering pXRF data + mining area + stage of rehabilitation (73%). The results highlight the potential of pXRF to accurately assess soil properties in environmental rehabilitation areas in the Amazon region (yet scarcely evaluated under this approach), promoting a more agile and cheaper preliminary diagnosis compared to traditional methods.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Clay , Brazil , Environmental Monitoring/methods , Soil Pollutants/analysis , Iron/analysis
2.
Hum Genomics ; 17(1): 102, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968704

ABSTRACT

BACKGROUND: Next-generation sequencing has had a significant impact on genetic disease diagnosis, but the interpretation of the vast amount of genomic data it generates can be challenging. To address this, the American College of Medical Genetics and Genomics and the Association for Molecular Pathology have established guidelines for standardized variant interpretation. In this manuscript, we present the updated Hospital Israelita Albert Einstein Standards for Constitutional Sequence Variants Classification, incorporating modifications from leading genetics societies and the ClinGen initiative. RESULTS: First, we standardized the scientific publications, documents, and other reliable sources for this document to ensure an evidence-based approach. Next, we defined the databases that would provide variant information for the classification process, established the terminology for molecular findings, set standards for disease-gene associations, and determined the nomenclature for classification criteria. Subsequently, we defined the general rules for variant classification and the Bayesian statistical reasoning principles to enhance this process. We also defined bioinformatics standards for automated classification. Our workgroup adhered to gene-specific rules and workflows curated by the ClinGen Variant Curation Expert Panels whenever available. Additionally, a distinct set of specifications for criteria modulation was created for cancer genes, recognizing their unique characteristics. CONCLUSIONS: The development of an internal consensus and standards for constitutional sequence variant classification, specifically adapted to the Brazilian population, further contributes to the continuous refinement of variant classification practices. The aim of these efforts from the workgroup is to enhance the reliability and uniformity of variant classification.


Subject(s)
Genetic Testing , Genetic Variation , Humans , United States , Mutation , Reproducibility of Results , Bayes Theorem , Genome, Human
3.
Front Genet ; 13: 921324, 2022.
Article in English | MEDLINE | ID: mdl-36147510

ABSTRACT

Hearing loss (HL) is a common sensory deficit in humans and represents an important clinical and social burden. We studied whole-genome sequencing data of a cohort of 2,097 individuals from the Brazilian Rare Genomes Project who were unaffected by hearing loss to investigate pathogenic and likely pathogenic variants associated with nonsyndromic hearing loss (NSHL). We found relevant frequencies of individuals harboring these alterations: 222 heterozygotes (10.59%) for sequence variants, 54 heterozygotes (2.58%) for copy-number variants (CNV), and four homozygotes (0.19%) for sequence variants. The top five most frequent genes and their corresponding combined allelic frequencies (AF) were GJB2 (AF = 1.57%), STRC (AF = 1%), OTOA (AF = 0.69%), TMPRSS3 (AF = 0.41%), and OTOF (AF = 0.29%). The most frequent sequence variant was GJB2:c.35del (AF = 0.72%), followed by OTOA:p. (Glu787Ter) (AF = 0.61%), while the most recurrent CNV was a microdeletion of 57.9 kb involving the STRC gene (AF = 0.91%). An important fraction of these individuals (n = 104; 4.96%) presented variants associated with autosomal dominant forms of NSHL, which may imply the development of some hearing impairment in the future. Using data from the heterozygous individuals for recessive forms and the Hardy-Weinberg equation, we estimated the population frequency of affected individuals with autosomal recessive NSHL to be 1:2,222. Considering that the overall prevalence of HL in adults ranges from 4-15% worldwide, our data indicate that an important fraction of this condition may be associated with a monogenic origin and dominant inheritance.

4.
Front Mol Biosci ; 9: 821582, 2022.
Article in English | MEDLINE | ID: mdl-35586190

ABSTRACT

Rare diseases affect up to 13.2 million individuals in Brazil. The Brazilian Rare Genomes Project is envisioned to further the implementation of genomic medicine into the Brazilian public healthcare system. Here we report the validation results of a whole genome sequencing (WGS) procedure for implementation in clinical laboratories. In addition, we report data quality for the first 1,200 real-world patients sequenced. We sequenced a well-characterized group of 76 samples, including seven gold standard genomes, using a PCR-free WGS protocol on Illumina Novaseq 6,000 equipment. We compared the observed variant calls with their expected calls, observing good concordance for single nucleotide variants (SNVs; mean F-measure = 99.82%) and indels (mean F-measure = 99.57%). Copy number variants and structural variants events detection performances were as expected (F-measures 96.6% and 90.3%, respectively). Our WGS protocol presented excellent intra-assay reproducibility (coefficients of variation ranging between 0.03% and 0.20%) and inter-assay reproducibility (coefficients of variation ranging between 0.02% and 0.09%). Limitations of the WGS protocol include the inability to confidently detect variants such as uniparental disomy, balanced translocations, repeat expansion variants, and low-level mosaicism. In summary, the observed performance of the WGS protocol was in accordance with that seen in the best centers worldwide. The Rare Genomes Project is an important initiative to bring pivotal improvements to the quality of life of the affected individuals.

5.
Environ Monit Assess ; 194(4): 256, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35257264

ABSTRACT

Open-cast iron mining causes drastic disturbances in soil properties. Recovery of soil chemical and physical properties is essential for successful revegetation and landscape rehabilitation. To identify changes in soil properties during the mining and revegetation process, soil samples were collected from undisturbed sites represented by forest and ferriferous savannas stocking above iron outcrops, called "cangas," in open-pit benches, and in rehabilitation chronosequences of iron waste piles in the Carajás Mineral Province (CMP), Eastern Amazon, Brazil. The samples were analyzed for chemical and physical properties. Our results showed that iron mining operations resulted in significant alteration of the chemical soil properties when forest and canga vegetation are suppressed to form open-pit benches or waste piles in the CMP. Mining substrates showed lower contents of soil organic matter (SOM) and nutrients than undisturbed areas of forests and cangas. In order to achieve the success of revegetation, nutrients have been added prior to plant establishment. We have demonstrated how soil fertility changes along with mineland rehabilitation, and the variation among chronosequence was attributable mainly due to contents of SOM, K, and B in the soil. The slight improvement of SOM found in rehabilitated waste piles reinforces the notion that recovery of soil quality can be a slow process in iron minelands in the CMP.


Subject(s)
Soil Pollutants , Soil , Environmental Monitoring , Forests , Iron , Mining , Soil/chemistry
6.
Goiânia; SES-GO; 2022. 1-76 p. ilus, quad, fig.(Gestão e inovação em tempos de pandemia: um relato de experiência à frente da SES-GO, 5).
Monography in Portuguese | LILACS, CONASS, Coleciona SUS, SES-GO | ID: biblio-1401027

ABSTRACT

O novo coronavírus (SARSCoV-2) instaurou inúmeros desafios no contexto da gestão pública, não só da saúde pública, mas também da economia e da educação; e ainda nos aspectos da vida social e individual, deixando centenas de milhões de casos e milhões de mortes, transformando a realidade conhecida. Diante deste contexto este e-book buscou agregar e compilar experiências da Secretaria de Estado da Saúde de Goiás (SES/GO) no enfrentamento à pandemia, nos mais diferentes aspectos da gestão em saúde (vigilância, regulação, assistência, transparência, gestão de pessoas, entre outros)


The new coronavirus (SARSCoV-2) has created numerous challenges in the context of public management, not only in public health, but also in the economy and education; and even in the aspects of social and individual life, leaving hundreds of millions of cases and millions of deaths, transforming the known reality. Given this context, this e-book sought to aggregate and compile experiences of the State Department of Health of Goiás (SES/GO) in facing the pandemic, in the most different aspects of health management (surveillance, regulation, assistance, transparency, people management , between others)


Subject(s)
COVID-19 , Telemedicine , Health Sciences, Technology, and Innovation Management , Public Health Laboratory Services , Health Information Management , Evidence-Informed Policy , Health Policy
7.
BMC Genomics ; 21(1): 487, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32677885

ABSTRACT

BACKGROUND: Cestoda is a class of endoparasitic worms in the flatworm phylum (Platyhelminthes). During the course of their evolution cestodes have evolved some interesting aspects, such as their increased reproductive capacity. In this sense, they have serial repetition of their reproductive organs in the adult stage, which is often associated with external segmentation in a developmental process called strobilation. However, the molecular basis of strobilation is poorly understood. To assess this issue, an evolutionary comparative study among strobilated and non-strobilated flatworm species was conducted to identify genes and proteins related to the strobilation process. RESULTS: We compared the genomic content of 10 parasitic platyhelminth species; five from cestode species, representing strobilated parasitic platyhelminths, and five from trematode species, representing non-strobilated parasitic platyhelminths. This dataset was used to identify 1813 genes with orthologues that are present in all cestode (strobilated) species, but absent from at least one trematode (non-strobilated) species. Development-related genes, along with genes of unknown function (UF), were then selected based on their transcriptional profiles, resulting in a total of 34 genes that were differentially expressed between the larval (pre-strobilation) and adult (strobilated) stages in at least one cestode species. These 34 genes were then assumed to be strobilation related; they included 12 encoding proteins of known function, with 6 related to the Wnt, TGF-ß/BMP, or G-protein coupled receptor signaling pathways; and 22 encoding UF proteins. In order to assign function to at least some of the UF genes/proteins, a global gene co-expression analysis was performed for the cestode species Echinococcus multilocularis. This resulted in eight UF genes/proteins being predicted as related to developmental, reproductive, vesicle transport, or signaling processes. CONCLUSIONS: Overall, the described in silico data provided evidence of the involvement of 34 genes/proteins and at least 3 developmental pathways in the cestode strobilation process. These results highlight on the molecular mechanisms and evolution of the cestode strobilation process, and point to several interesting proteins as potential developmental markers and/or targets for the development of novel antihelminthic drugs.


Subject(s)
Cestoda/growth & development , Cestoda/genetics , Animals , Cestoda/classification , Cestoda/metabolism , Evolution, Molecular , Gene Expression Profiling , Genes, Helminth , Helminth Proteins/genetics , Helminth Proteins/metabolism , Phylogeny
8.
Environ Monit Assess ; 192(6): 390, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32447464

ABSTRACT

Impacted areas by iron mining may face challenges in the management of phosphate fertilization and reduced efficiency of rehabilitation practices, thus extending the time required for the rehabilitation of these areas. The objective of this study was to evaluate phosphorus (P) lability in soils of native forest and ferriferous canga areas (savanna vegetation above ironstone outcrops covering iron ore deposits) and in iron mine waste piles undergoing rehabilitation. Benches of the analysed waste pile differ in age of rehabilitation: as the initial rehabilitation stage (INI), we consider benches with fewer than 3 years of rehabilitation; the intermediate stage (INT) were benches with up to 5 years of rehabilitation; and the advanced rehabilitation stage (ADV) corresponds to benches with more than 8 years of rehabilitation activities. Organic and inorganic P fractions were analysed in these areas by chemical fractionation and were classified according to the degree of soil lability. The results show that in the canga environment, there was a predominance of inorganic fractions of moderate lability and moderate stability, with a strong dependency of the soil organic matter (SOM) on the P fractions, whereas there was a greater participation of the moderately labile organic fractions in the forest than in the canga. On the other hand, in the rehabilitation areas, there was an increase in the labile organic and inorganic fractions as the rehabilitation process advanced. The distribution of P in areas undergoing rehabilitation indicates that there is a tendency for P levels to resemble those of native environments, such as the forests.


Subject(s)
Environmental Monitoring , Iron , Phosphorus , Forests , Soil
9.
Mudanças ; 27(2): 15-26, jul.-dez. 2019. ilus
Article in Portuguese | LILACS-Express | LILACS, Index Psychology - journals | ID: biblio-1250382

ABSTRACT

Esse trabalho objetiva compreender situações de violação de direitos envolvendo uma adolescente e suas relações familiares em uma perspectiva transgeracional. Utilizou-se de abordagem qualitativa para o estudo de caso único da adolescente, com os instrumentos Genograma, Formulário para Caracterização dos Adolescentes e Diário de Campo. Verificou-se o processo transgeracional na repetição de conflitos ocorridos entre a sua avó e sua mãe, que teve efeitos no desenvolvimento da adolescente, já que viveu em um ambiente de risco, no qual foi abusada por uma das pessoas que deveria assumir papel de cuidador. Foi verificado também que a adolescente teve diversos direitos violados, como: negligência familiar, violência física e exploração do trabalho infantil. Apesar disso, ela demonstrou um laço significativo com a mãe adotiva, relação que contribuía no enfrentamento da situação de risco que estava inserida.


This research aims to understand violation of rights situations involving an adolescent and her family relationships in a transgenerational perspective. A qualitative approach was used for single case study of the adolescent, with the instruments Genogram, Form for Characterization of Adolescents and Field Diary. It was verified transgenerational process in the repetition of conflicts occurred between her grandmother and her mother, which had an effect on development of the adolescent, since she lived in an context of risk, where she was abused by one of people who should assume the role of caregiver. Nevertheless, she showed a significant bond with her adoptive mother, a relationship that contributed to coping with the risk situation that was inserted.

10.
BMC Genomics ; 20(1): 836, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31711419

ABSTRACT

BACKGROUND: The Metarhizium genus harbors important entomopathogenic fungi. These species have been widely explored as biological control agents, and strategies to improve the fungal virulence are under investigation. Thus, the interaction between Metarhizium species and susceptible hosts have been explored employing different methods in order to characterize putative virulence determinants. However, the impact of epigenetic modulation on the infection cycle of Metarhizium is still an open topic. Among the different epigenetic modifications, DNA methylation of cytosine bases is an important mechanism to control gene expression in several organisms. To better understand if DNA methylation can govern Metarhizium-host interactions, the genome-wide DNA methylation profile of Metarhizium anisopliae was explored in two conditions: tick mimicked infection and a saprophytic-like control. RESULTS: Using a genome wide DNA methylation profile based on bisulfite sequencing (BS-Seq), approximately 0.60% of the total cytosines were methylated in saprophytic-like condition, which was lower than the DNA methylation level (0.89%) in tick mimicked infection condition. A total of 670 mRNA genes were found to be putatively methylated, with 390 mRNA genes uniquely methylated in the tick mimicked infection condition. GO terms linked to response to stimuli, cell wall morphogenesis, cytoskeleton morphogenesis and secondary metabolism biosynthesis were over-represented in the tick mimicked infection condition, suggesting that energy metabolism is directed towards the regulation of genes associated with infection. However, recognized virulence determinants known to be expressed at distinct infection steps, such as the destruxin backbone gene and the collagen-like protein gene Mcl1, were found methylated, suggesting that a dynamic pattern of methylation could be found during the infectious process. These results were further endorsed employing RT-qPCR from cultures treated or not with the DNA methyltransferase inhibitor 5-Azacytidine. CONCLUSIONS: The set of genes here analyzed focused on secondary metabolites associated genes, known to be involved in several processes, including virulence. The BS-Seq pipeline and RT-qPCR analysis employing 5-Azacytidine led to identification of methylated virulence genes in M. anisopliae. The results provided evidences that DNA methylation in M. anisopliae comprises another layer of gene expression regulation, suggesting a main role of DNA methylation regulating putative virulence determinants during M. anisopliae infection cycle.


Subject(s)
DNA Methylation , Metarhizium/genetics , Ticks/microbiology , Animals , Genome, Fungal , Metarhizium/metabolism , Metarhizium/pathogenicity , RNA-Seq , Secondary Metabolism , Virulence
11.
Genomics ; 111(3): 407-417, 2019 05.
Article in English | MEDLINE | ID: mdl-29499243

ABSTRACT

Trypanosoma vivax is a parasite widespread across Africa and South America. Immunological methods using recombinant antigens have been developed aiming at specific and sensitive detection of infections caused by T. vivax. Here, we sequenced for the first time the transcriptome of a virulent T. vivax strain (Lins), isolated from an outbreak of severe disease in South America (Brazil) and performed a computational integrated analysis of genome, transcriptome and in silico predictions to identify and characterize putative linear B-cell epitopes from African and South American T. vivax. A total of 2278, 3936 and 4062 linear B-cell epitopes were respectively characterized for the transcriptomes of T. vivax LIEM-176 (Venezuela), T. vivax IL1392 (Nigeria) and T. vivax Lins (Brazil) and 4684 for the genome of T. vivax Y486 (Nigeria). The results presented are a valuable theoretical source that may pave the way for highly sensitive and specific diagnostic tools.


Subject(s)
Epitopes, B-Lymphocyte/genetics , Transcriptome , Trypanosoma/genetics , Animals , Epitopes, B-Lymphocyte/immunology , Goats , Trypanosoma/immunology
12.
Curr Biol ; 28(24): 4001-4008.e7, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30528582

ABSTRACT

Parrots are one of the most distinct and intriguing groups of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication [3] skills, and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the blue-fronted Amazon (Amazona aestiva) and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity; DNA damage repair; control of cell proliferation, cancer, and immunity; and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal-learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.


Subject(s)
Amazona/physiology , Biological Evolution , Cognition , Genome , Longevity/genetics , Amazona/genetics , Animals , Male
13.
Front Microbiol ; 8: 1063, 2017.
Article in English | MEDLINE | ID: mdl-28659888

ABSTRACT

The emergence of new microbial pathogens can result in destructive outbreaks, since their hosts have limited resistance and pathogens may be excessively aggressive. Described as the major ecological incident of the twentieth century, Dutch elm disease, caused by ascomycete fungi from the Ophiostoma genus, has caused a significant decline in elm tree populations (Ulmus sp.) in North America and Europe. Genome sequencing of the two main causative agents of Dutch elm disease (Ophiostoma ulmi and Ophiostoma novo-ulmi), along with closely related species with different lifestyles, allows for unique comparisons to be made to identify how pathogens and virulence determinants have emerged. Among several established virulence determinants, secondary metabolites (SMs) have been suggested to play significant roles during phytopathogen infection. Interestingly, the secondary metabolism of Dutch elm pathogens remains almost unexplored, and little is known about how SM biosynthetic genes are organized in these species. To better understand the metabolic potential of O. ulmi and O. novo-ulmi, we performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in these species and assessed their conservation among eight species from the Ophiostomataceae family. Among 19 identified BGCs, a fujikurin-like gene cluster (OpPKS8) was unique to Dutch elm pathogens. Phylogenetic analysis revealed that orthologs for this gene cluster are widespread among phytopathogens and plant-associated fungi, suggesting that OpPKS8 may have been horizontally acquired by the Ophiostoma genus. Moreover, the detailed identification of several BGCs paves the way for future in-depth research and supports the potential impact of secondary metabolism on Ophiostoma genus' lifestyle.

14.
PLoS One ; 11(12): e0168626, 2016.
Article in English | MEDLINE | ID: mdl-28005945

ABSTRACT

Transcriptional regulation, a multiple-step process, is still poorly understood in the important pig pathogen Mycoplasma hyopneumoniae. Basic motifs like promoters and terminators have already been described, but no other cis-regulatory elements have been found. DNA repeat sequences have been shown to be an interesting potential source of cis-regulatory elements. In this work, a genome-wide search for tandem and palindromic repetitive elements was performed in the intergenic regions of all coding sequences from M. hyopneumoniae strain 7448. Computational analysis demonstrated the presence of 144 tandem repeats and 1,171 palindromic elements. The DNA repeat sequences were distributed within the 5' upstream regions of 86% of transcriptional units of M. hyopneumoniae strain 7448. Comparative analysis between distinct repetitive sequences found in related mycoplasma genomes demonstrated different percentages of conservation among pathogenic and nonpathogenic strains. qPCR assays revealed differential expression among genes showing variable numbers of repetitive elements. In addition, repeats found in 206 genes already described to be differentially regulated under different culture conditions of M. hyopneumoniae strain 232 showed almost 80% conservation in relation to M. hyopneumoniae strain 7448 repeats. Altogether, these findings suggest a potential regulatory role of tandem and palindromic DNA repeats in the M. hyopneumoniae transcriptional profile.


Subject(s)
Genes, Bacterial/genetics , Mycoplasma hyopneumoniae/genetics , Pneumonia of Swine, Mycoplasmal/genetics , Repetitive Sequences, Nucleic Acid/genetics , Tandem Repeat Sequences/genetics , Transcription, Genetic , Animals , Genome, Bacterial , Pneumonia of Swine, Mycoplasmal/microbiology , Promoter Regions, Genetic/genetics , Sequence Analysis, DNA , Swine
15.
BMC Genomics ; 17(Suppl 8): 736, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27801295

ABSTRACT

BACKGROUND: The described species from the Metarhizium genus are cosmopolitan fungi that infect arthropod hosts. Interestingly, while some species infect a wide range of hosts (host-generalists), other species infect only a few arthropods (host-specialists). This singular evolutionary trait permits unique comparisons to determine how pathogens and virulence determinants emerge. Among the several virulence determinants that have been described, secondary metabolites (SMs) are suggested to play essential roles during fungal infection. Despite progress in the study of pathogen-host relationships, the majority of genes related to SM production in Metarhizium spp. are uncharacterized, and little is known about their genomic organization, expression and regulation. To better understand how infection conditions may affect SM production in Metarhizium anisopliae, we have performed a deep survey and description of SM biosynthetic gene clusters (BGCs) in M. anisopliae, analyzed RNA-seq data from fungi grown on cattle-tick cuticles, evaluated the differential expression of BGCs, and assessed conservation among the Metarhizium genus. Furthermore, our analysis extended to the construction of a phylogeny for the following three BGCs: a tropolone/citrinin-related compound (MaPKS1), a pseurotin-related compound (MaNRPS-PKS2), and a putative helvolic acid (MaTERP1). RESULTS: Among 73 BGCs identified in M. anisopliae, 20 % were up-regulated during initial tick cuticle infection and presumably possess virulence-related roles. These up-regulated BGCs include known clusters, such as destruxin, NG39x and ferricrocin, together with putative helvolic acid and, pseurotin and tropolone/citrinin-related compound clusters as well as uncharacterized clusters. Furthermore, several previously characterized and putative BGCs were silent or down-regulated in initial infection conditions, indicating minor participation over the course of infection. Interestingly, several up-regulated BGCs were not conserved in host-specialist species from the Metarhizium genus, indicating differences in the metabolic strategies employed by generalist and specialist species to overcome and kill their host. These differences in metabolic potential may have been partially shaped by horizontal gene transfer (HGT) events, as our phylogenetic analysis provided evidence that the putative helvolic acid cluster in Metarhizium spp. originated from an HGT event. CONCLUSIONS: Several unknown BGCs are described, and aspects of their organization, regulation and origin are discussed, providing further support for the impact of SM on the Metarhizium genus lifestyle and infection process.


Subject(s)
Genome, Fungal , Genomics , Metarhizium/genetics , Metarhizium/metabolism , Secondary Metabolism/genetics , Transcriptome , Animals , Evolution, Molecular , Gene Expression Profiling , Gene Expression Regulation , Gene Order , Genomics/methods , Host-Pathogen Interactions , Metarhizium/classification , Phylogeny , Quantitative Trait, Heritable , Ticks/microbiology
16.
Infect Genet Evol ; 41: 262-269, 2016 07.
Article in English | MEDLINE | ID: mdl-27101783

ABSTRACT

Canine distemper virus (CDV) is a major dog pathogen belonging to the genus Morbillivirus of the family Paramyxoviridae. CDV causes disease and high mortality in dogs and wild carnivores. Although homologous recombination has been demonstrated in many members of Paramyxoviridae, these events have rarely been reported for CDV. To detect potential recombination events, the complete CDV genomes available in GenBank up to June 2015 were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Eight putative recombinant viruses derived from different CDV genotypes and different hosts were detected. The breakpoints of the recombinant strains were primarily located on fusion and hemagglutinin glycoproteins. These results suggest that homologous recombination is a frequent phenomenon in morbillivirus populations under natural replication, and CDV vaccine strains might play an important role in shaping the evolution of this virus.


Subject(s)
Distemper Virus, Canine , Distemper , Evolution, Molecular , Viral Vaccines/genetics , Algorithms , Animals , Distemper/prevention & control , Distemper/virology , Distemper Virus, Canine/classification , Distemper Virus, Canine/genetics , Distemper Virus, Canine/pathogenicity , Dogs , Genome, Viral/genetics , Phylogeny , Recombination, Genetic
17.
Cell Microbiol ; 18(10): 1405-14, 2016 10.
Article in English | MEDLINE | ID: mdl-26918656

ABSTRACT

Staphylococcus aureus bone and joint infection (BJI) is associated with significant rates of chronicity and relapse. In this study, we investigated how S. aureus is able to adapt to the human environment by comparing isolates from single patients with persisting or relapsing BJIs that were recovered during the initial and recurrent BJI episodes. In vitro and in vivo assays and whole-genome sequencing analyses revealed that the recurrent isolates induced a reduced inflammatory response, formed more biofilms, persisted longer in the intracellular compartments of host bone cells, were less cytotoxic and induced less mortality in a mouse infection model compared with the initial isolates despite the lack of significant changes at the genomic level. These findings suggest that S. aureus BJI chronicization is associated with an in vivo bacterial phenotypical adaptation that leads to decreased virulence and host immune escape, which is linked to increased intraosteoblastic persistence and biofilm formation.


Subject(s)
Arthritis, Infectious/microbiology , Biofilms , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Adaptation, Physiological , Adult , Aged, 80 and over , Amino Acid Sequence , Cells, Cultured , Chronic Disease , Disease Progression , Female , Hemolysin Proteins/metabolism , Host-Pathogen Interactions , Humans , Male , Osteoblasts/immunology , Osteoblasts/microbiology
18.
BMC Genomics ; 16: 499, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141959

ABSTRACT

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. CL Brener, the reference strain of the T. cruzi genome project, is a hybrid with a genome assembled into 41 putative chromosomes. Gene copy number variation (CNV) is well documented as an important mechanism to enhance gene expression and variability in T. cruzi. Chromosomal CNV (CCNV) is another level of gene CNV in which whole blocks of genes are expanded simultaneously. Although the T. cruzi karyotype is not well defined, several studies have demonstrated a significant variation in the size and content of chromosomes between different T. cruzi strains. Despite these studies, the extent of diversity in CCNV among T. cruzi strains based on a read depth coverage analysis has not been determined. RESULTS: We identify the CCNV in T. cruzi strains from the TcI, TcII and TcIII DTUs, by analyzing the depth coverage of short reads from these strains using the 41 CL Brener chromosomes as reference. This study led to the identification of a broader extent of CCNV in T. cruzi than was previously speculated. The TcI DTU strains have very few aneuploidies, while the strains from TcII and TcIII DTUs present a high degree of chromosomal expansions. Chromosome 31, which is the only chromosome that is supernumerary in all six T. cruzi samples evaluated in this study, is enriched with genes related to glycosylation pathways, highlighting the importance of glycosylation to parasite survival. CONCLUSIONS: Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression, which represents a strategy that may be crucial for parasites that mainly depend on post-transcriptional mechanisms to control gene expression.


Subject(s)
DNA Copy Number Variations/genetics , Genome, Protozoan/genetics , Trypanosoma cruzi/genetics , DNA, Protozoan/genetics , Gene Expression/genetics , Genetic Variation/genetics , Genomics/methods , Glycosylation
19.
PLoS One ; 9(10): e110327, 2014.
Article in English | MEDLINE | ID: mdl-25333523

ABSTRACT

The swine respiratory ciliary epithelium is mainly colonized by Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae and M. hyorhinis infections may cause respiratory disease. Information regarding transcript structure and gene abundance provides valuable insight into gene function and regulation, which has not yet been analyzed on a genome-wide scale in these Mycoplasma species. In this study, we report the construction of transcriptome maps for M. hyopneumoniae, M. flocculare and M. hyorhinis, which represent data for conducting comparative studies on the transcriptional repertory. For each species, three cDNA libraries were generated, yielding averages of 415,265, 695,313 and 93,578 reads for M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively, with an average read length of 274 bp. The reads mapping showed that 92%, 98% and 96% of the predicted genes were transcribed in the M. hyopneumoniae, M. flocculare and M. hyorhinis genomes, respectively. Moreover, we showed that the majority of the genes are co-expressed, confirming the previously predicted transcription units. Finally, our data defined the RNA populations in detail, with the map transcript boundaries and transcription unit structures on a genome-wide scale.


Subject(s)
Gene Expression Regulation, Bacterial , Mycoplasma Infections/veterinary , Mycoplasma/genetics , Respiratory Tract Infections/veterinary , Swine Diseases/microbiology , Transcriptome , Adhesins, Bacterial/genetics , Animals , Chromosome Mapping , Computational Biology/methods , DNA, Complementary , Genome, Bacterial , Genomics , High-Throughput Nucleotide Sequencing , RNA, Untranslated/genetics , Swine , Transcription, Genetic
20.
PLoS One ; 9(9): e107864, 2014.
Article in English | MEDLINE | ID: mdl-25232743

ABSTRACT

Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18) and 19 (GH19) and are responsible for the hydrolysis of ß-1,4-linkages in chitin. This linear homopolymer of N-acetyl-ß-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-ß-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study concerning the enzymes' roles in morphological or nutritional functions will allow comprehensive insights into the chitinolytic potential of this highly infective entomopathogenic fungus.


Subject(s)
Chitinases/genetics , Fungal Proteins/genetics , Metarhizium/genetics , Chitinases/metabolism , Fungal Proteins/metabolism , Genome, Fungal , Metarhizium/enzymology , Phylogeny , Sequence Analysis, DNA , Transcription, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...