Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 82(10): 1706-1719, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31294498

ABSTRACT

INTRODUCTION: Procedures for measuring and counting tracks are time-consuming and involve practical problems. The precision of automatic counting methods is not satisfactory yet; the major challenges are distinguishing tracks and material defects, identifying small tracks and defects of similar size, and detecting overlapping tracks. MATERIALS AND METHODS: Here, we address the overlapping tracks issue using the algorithm Watershed Using Successive Erosions as Markers (WUSEM), which combines the watershed transform, morphological erosions and labeling to separate regions in photomicrographs. We tested this method in two data sets of diallyl phthalate (DAP) photomicrographs and compared the results when counting manually and using the classic watershed and H-watershed transforms. RESULTS: The mean automatic/manual efficiency counting ratio when using WUSEM in the test data sets is 0.97 ± 0.11. CONCLUSION: WUSEM shows reliable results when used in photomicrographs presenting almost isotropic objects. Also, diameter and eccentricity criteria may be used to increase the reliability of this method.

2.
Appl Spectrosc ; 67(4): 404-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23601540

ABSTRACT

Characterization by micro-Raman spectroscopy of polymeric materials used as nuclear track detectors reveals physico-chemical and morphological information on the material's molecular structure. In this work, the nuclear track detector poly(allyl diglycol carbonate), or Columbia Resin 39 (CR-39), was characterized according to the fluence of alpha particles produced by a (226)Ra source and chemical etching time. Therefore, damage of the CR-39 chemical structure due to the alpha-particle interaction with the detector was analyzed at the molecular level. It was observed that the ionization and molecular excitation of the CR-39 after the irradiation process entail cleavage of chemical bonds and formation of latent track. In addition, after the chemical etching, there is also loss of polymer structure, leading to the decrease of the group density C-O-C (∼888 cm(-1)), CH=CH (∼960 cm(-1)), C-O (∼1110 cm(-1)), C-O-C (∼1240 cm(-1)), C-O (∼1290 cm(-1)), C=O (∼1741 cm(-1)), -CH2- (∼2910 cm(-1)), and the main band -CH2- (∼2950 cm(-1)). The analyses performed after irradiation and chemical etching led to a better understanding of the CR-39 molecular structure and better comprehension of the process of the formation of the track, which is related to chemical etching kinetics.

3.
Appl Spectrosc ; 66(5): 545-51, 2012 May.
Article in English | MEDLINE | ID: mdl-22524960

ABSTRACT

Studies of zircon grains using optical microscopy, micro-Raman spectroscopy, and scanning electron microscopy (SEM) have been carried out to characterize the surface of natural zircon as a function of etching time. According to the surface characteristics observed using an optical microscope after etching, the zircon grains were classified as: (i) homogeneous; (ii) anomalous, and (iii) hybrid. Micro-Raman results showed that, as etching time increases, the crystal lattice is slightly altered for homogeneous grains, it is completely damaged for anomalous grains, and it is altered in some areas for hybrid grains. The SEM (energy dispersive X-ray spectroscopy, EDS) results indicated that, independent of the grain types, where the crystallinity remains after etching, the chemical composition of zircon is approximately 33% SiO(2):65% ZrO(2) (standard natural zircon), and for areas where the grain does not have a crystalline structure, there are variations of ZrO(2) and, mainly, SiO(2). In addition, it is possible to observe a uniform surface density of fission tracks in grain areas where the determined crystal lattice and chemical composition are those of zircon. Regarding hybrid grains, we discuss whether the areas slightly altered by the chemical etching can be analyzed by the fission track method (FTM) or not. Results of zircon fission track and U-Pb dating show that hybrid and homogeneous grains can be used for dating, and not only homogeneous grains. More than 50 sedimentary samples from the Bauru Basin (southeast Brazil) were analyzed and show that only a small amount of grains are homogeneous (10%), questioning the validity of the rest of the grains for thermo-chronological evolution studies using zircon FTM dating.

SELECTION OF CITATIONS
SEARCH DETAIL
...