Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36826310

ABSTRACT

Projects of inertial confinement fusion using lasers need numerous optical components whose coatings allow the increase in their transmission and their resistance to high laser fluence. A coating process based on the self-assembly of sol-gel silica nanoparticles and a post-treatment with ammonia vapor over the surfaces of the optical components ("ammonia curing process") was developed and successfully optimized for industrial production. Manufacturing such antireflective coatings has clear advantages: (i) it is much cheaper than conventional top-down processes; (ii) it is well adapted to large-sized optical components and large-scale production; and (iii) it gives low optical losses in transmission and high resistances to laser fluence. The post-treatment was achieved by a simple exposition of optical components to room-temperature ammonia vapors. The resulting curing process induced strong optical and mechanical changes at the interface and was revealed to be of paramount importance since it reinforced the adhesion and abrasion resistance of the components so that the optical components could be handled easily. Here, we discuss how such coatings were characterized and how the initial thin nanoparticle film was transformed from a brittle film to a resistant coating from the ammonia curing process.

2.
Sci Rep ; 11(1): 8180, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33854146

ABSTRACT

We analyze, using experiments and 3D MHD numerical simulations, the dynamic and radiative properties of a plasma ablated by a laser (1 ns, 10[Formula: see text]-10[Formula: see text] W/cm[Formula: see text]) from a solid target as it expands into a homogeneous, strong magnetic field (up to 30 T) that is transverse to its main expansion axis. We find that as early as 2 ns after the start of the expansion, the plasma becomes constrained by the magnetic field. As the magnetic field strength is increased, more plasma is confined close to the target and is heated by magnetic compression. We also observe that after [Formula: see text] ns, the plasma is being overall shaped in a slab, with the plasma being compressed perpendicularly to the magnetic field, and being extended along the magnetic field direction. This dense slab rapidly expands into vacuum; however, it contains only [Formula: see text] of the total plasma. As a result of the higher density and increased heating of the plasma confined against the laser-irradiated solid target, there is a net enhancement of the total X-ray emissivity induced by the magnetization.

3.
Opt Lett ; 45(3): 766, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32004305

ABSTRACT

This publisher's note contains corrections to Opt. Lett.45, 519 (2020) OPLEDP0146-959210.1364/OL.45.000519.

SELECTION OF CITATIONS
SEARCH DETAIL
...