Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Article in English | MEDLINE | ID: mdl-35232796

ABSTRACT

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Subject(s)
Hand Deformities, Congenital , Intellectual Disability , Micrognathism , Neurodevelopmental Disorders , Humans , Micrognathism/genetics , Hand Deformities, Congenital/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Syndrome , Phenotype , DNA , SOXC Transcription Factors/genetics
2.
Cell Rep ; 35(10): 109226, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107259

ABSTRACT

The development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport. In self-renewing NPCs, CELF2 resides in the cytoplasm, where it represses mRNAs encoding cell fate regulators and neurodevelopmental disorder-related factors. The translocation of CELF2 into the nucleus releases mRNA for translation and thereby triggers NPC differentiation. Our results reveal that CELF2 translocation between subcellular compartments orchestrates mRNA at the translational level to instruct cell fates in cortical development.


Subject(s)
CELF Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , RNA-Binding Proteins/metabolism , Cell Differentiation , Humans
3.
Pediatr Nephrol ; 27(4): 581-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22101457

ABSTRACT

Inactivating mutations in phosphate-regulating endopeptidase (PHEX) cause X-linked hypophosphatemic rickets (XLHR) characterized by phosphaturia, hypophosphatemia, bony deformities, and growth retardation. We assessed the efficacy of combined calcitriol and orally administered phosphate (Pi) therapy on longitudinal growth in relation to age at treatment onset in a retrospective, single-center review of children with XLHR and documented PHEX mutations. Growth was compared in those who started treatment before (G1; N = 10; six boys) and after (G2; N = 13; five boys) 1 year old. Median height standard deviation score (HSDS) at treatment onset was normal in G1: 0.1 [interquartile range (IR) -1.3 to 0.4) and significantly (p = 0.004) lower in G2 (IR -2.1 (-2.8 to -1.4). Treatment duration was similar [G1 8.5 (4.0-15.2) vs G2 11.9 (6.2-14.3) years; p = 0.56], as were prescribed phosphate and calcitriol doses. Recent HSDS was significantly (p = 0.009) better in G1 [-0.7 (-1.5 to 0.3)] vs G2 [-2.0 (-2.3 to -1.0)]. No effects of gender or genotype on growth could be identified. Children with PHEX-associated XLHR benefit from early treatment and can achieve normal growth. Minimal catchup growth was seen in those who started treatment later. Our findings emphasize the importance of early diagnosis to allow treatment before growth has been compromised.


Subject(s)
Bone Density Conservation Agents/administration & dosage , Calcitriol/administration & dosage , Familial Hypophosphatemic Rickets/drug therapy , Genetic Diseases, X-Linked , Growth and Development/drug effects , Phosphates/administration & dosage , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/genetics , Female , Humans , Infant , Male , Mutation , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Retrospective Studies
4.
Hum Mutat ; 31(8): 950-60, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20506337

ABSTRACT

Familial isolated pituitary adenoma (FIPA) is an autosomal dominant condition with variable genetic background and incomplete penetrance. Germline mutations of the aryl hydrocarbon receptor interacting protein (AIP) gene have been reported in 15-40% of FIPA patients. Limited data are available on the functional consequences of the mutations or regarding the regulation of the AIP gene. We describe a large cohort of FIPA families and characterize missense and silent mutations using minigene constructs, luciferase and beta-galactosidase assays, as well as in silico predictions. Patients with AIP mutations had a lower mean age at diagnosis (23.6+/-11.2 years) than AIP mutation-negative patients (40.4+/-14.5 years). A promoter mutation showed reduced in vitro activity corresponding to lower mRNA expression in patient samples. Stimulation of the protein kinase A-pathway positively regulates the AIP promoter. Silent mutations led to abnormal splicing resulting in truncated protein or reduced AIP expression. A two-hybrid assay of protein-protein interaction of all missense variants showed variable disruption of AIP-phosphodiesterase-4A5 binding. In summary, exonic, promoter, splice-site, and large deletion mutations in AIP are implicated in 31% of families in our FIPA cohort. Functional characterization of AIP changes is important to identify the functional impact of gene sequence variants.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Pituitary Neoplasms/genetics , Adult , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Family , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense/genetics , Pedigree , Pituitary Neoplasms/enzymology , Promoter Regions, Genetic/genetics , RNA Splice Sites/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...