Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 10(4): 2949-55, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20355530

ABSTRACT

The tensile yield stress of plasticized starch filled with montmorillonite has been studied as a function of the temperature and the strain rate and has been compared to the yield behavior of the original matrix. Aggregated/intercalated and exfoliated nano-biocomposites, obtained from different nanofillers, have been produced and tested under uniaxial tension (tensile test). To model the nanocomposite tensile yield stress behavior, a preexisting micro-mechanically based cooperative model, which describes properly the yield of semi-crystalline polymers has been modified. According to our development, the yield behavior of nano-biocomposites is strongly dependant on the clay concentration and exfoliation ratio. Based on the thermodynamics properties, an effective activation volume and effective activation energy are computed through the Takayanagi homogenization model. The predicted results for the yield stress at low strain rates and at different temperatures are in agreement with our experimental results.

2.
J Nanosci Nanotechnol ; 10(4): 2956-61, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20355531

ABSTRACT

The elastic modulus and yield stress behaviour of a melt intercalated Poly(methylmethacrylate)/ organoclay (PMMA/C30B and PMMA/C20A) were studied using uniaxial tensile tests at different temperatures and different strain rate. The stress-strain response was obtained for different loading rates and different test temperature. Both the stiffness and the yield stress were then clearly identified as function of strain rate and temperature. Our experimental results show that the yield stress and modulus of both PMMA/C20A and PMMA/C30B organoclay nanocomposites are very sensitive to clay concentration, strain rate and temperature. A micromechanically-based composite approach was used to predict the yield stress of both PMMA/C20A and PMMA/C30B organoclay nanocomposites. The results obtained from the model are in good agreement with our experimental results. As expected, the activation enthalpy of cooperative model increased slightly while the activation volume decreases slightly with the clay concentration.

SELECTION OF CITATIONS
SEARCH DETAIL
...