Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoporos Int ; 33(4): 807-820, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34719727

ABSTRACT

Following severe injury, biomineralization is disrupted and limited therapeutic options exist to correct these pathologic changes. This study utilized a clinically relevant murine model of polytrauma including a severe injury with concomitant musculoskeletal injuries to identify when bisphosphonate administration can prevent the paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues, yet not interfere with musculoskeletal repair. INTRODUCTION: Systemic and intrinsic mechanisms in bone and soft tissues help promote biomineralization to the skeleton, while preventing it in soft tissues. However, severe injury can disrupt this homeostatic biomineralization tropism, leading to adverse patient outcomes due to a paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues. There remains a need for therapeutics that restore the natural tropism of biomineralization in severely injured patients. Bisphosphonates can elicit potent effects on biomineralization, though with variable impact on musculoskeletal repair. Thus, a critical clinical question remains as to the optimal time to initiate bisphosphonate therapy in patients following a polytrauma, in which bone and muscle are injured in combination with a severe injury, such as a burn. METHODS: To test the hypothesis that the dichotomous effects of bisphosphonates are dependent upon the time of administration relative to the ongoing biomineralization in reparative bone and soft tissues, this study utilized murine models of isolated injury or polytrauma with a severe injury, in conjunction with sensitive, longitudinal measure of musculoskeletal repair. RESULTS: This study demonstrated that if administered at the time of injury, bisphosphonates prevented severe injury-induced bone loss and soft tissue calcification, but did not interfere with bone repair or remodeling. However, if administered between 7 and 21 days post-injury, bisphosphonates temporally and spatially localized to sites of active biomineralization, leading to impaired fracture callus remodeling and permanence of soft tissue calcification. CONCLUSION: There is a specific pharmacologic window following polytrauma that bisphosphonates can prevent the consequences of dysregulated biomineralization, yet not impair musculoskeletal regeneration.


Subject(s)
Fractures, Bone , Osteoporosis , Animals , Bony Callus , Diphosphonates/adverse effects , Fractures, Bone/chemically induced , Humans , Mice , Muscles , Osteoporosis/drug therapy
2.
J Mater Chem B ; 5(22): 4198-4206, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-30101031

ABSTRACT

Bone cements for treatment of fractures at weight-bearing sites are subjected to dynamic physiological loading from daily activities. An ideal bone cement rapidly sets after injection, exhibits bone-like strength, stimulates osteogenic differentiation of endogenous cells, and resorbs at a rate aligned with patient biology. However, currently available materials fall short of these targeted properties. Nanocrystalline hydroxyapatite (nHA) enhances osteogenic differentiation, new bone formation, and osteoclast differentiation activity compared to amorphous or micron-scale crystalline hydroxyapatite. However, the brittle mechanical properties of nHA precludes its use in treatment of weight-bearing bone defects. In this study, we report settable nHA-poly(ester urethane) (PEUR) nanocomposites synthesized from nHA, lysine triisocyanate (LTI), and poly(caprolactone) triol via a solvent-free process. The nanocomposites are easily mixed and injected using a double-barrel syringe, exhibit mechanical properties exceeding those of conventional bone cements, enhance mineralization of osteoprogenitor cells in vitro, and undergo osteoclast-mediated degradation in vitro. This combination of properties cannot be achieved using other technologies, which underscores the potential of nHA-PEUR nanocomposites as a new approach for promoting bone healing at weight-bearing sites.

3.
J Mater Chem B ; 4(20): 3584-3593, 2016 May 28.
Article in English | MEDLINE | ID: mdl-27551426

ABSTRACT

Osteoblast differentiation of mesenchymal stem cells is regulated by both soluble factor (e.g., bone morphogenetic proteins (BMP)) and mechanically transduced signaling, but the mechanisms have only been partially elucidated. In this study, physical association of BMP Receptor I (BMPRI) with integrin ß1 sub-unit (Iß1) was hypothesized to mediate osteoblast differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) on bone-like substrates. The effects of substrate modulus on osteoblast differentiation of MSCs were investigated for 2D poly(ester urethane) films with moduli varying from 5 - 266 MPa, which spans the range from collagen fibrils to trabecular bone. SMAD1/5 and p44/42 MAPK signaling, expression of markers of osteoblast differentiation, and matrix mineralization increased with increasing substrate modulus. The effects of substrate modulus on osteoblast differentiation were mediated by Iß1, which was also expressed at higher levels on increasingly rigid substrates. Förster resonance energy transfer (FRET) and immunoprecipitation (IP) experiments showed that physical association of Iß1 and BMP Receptor I (BMRPRI) increased with substrate modulus, resulting in activation of the BMP signaling pathway. Thus, these studies showed that integrin and BMP signaling converge to regulate osteoblast differentiation of MSCs, which may potentially guide the design of scaffolds and rhBMP-2 delivery systems for bone regeneration.

4.
Biomaterials ; 73: 85-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26406449

ABSTRACT

The growing need for therapies to treat large cutaneous defects has driven recent interest in the design of scaffolds that stimulate regenerative wound healing. While many studies have investigated local delivery of biologics as a restorative approach, an increasing body of evidence highlights the contribution of the mechanical properties of implanted scaffolds to wound healing. In the present study, we designed poly(ester urethane) scaffolds using a templated-Fused Deposition Modeling (t-FDM) process to test the hypothesis that scaffolds with substrate modulus comparable to that of collagen fibers enhance a regenerative versus a fibrotic response. We fabricated t-FDM scaffolds with substrate moduli varying from 5 to 266 MPa to investigate the effects of substrate modulus on healing in a rat subcutaneous implant model. Angiogenesis, cellular infiltration, collagen deposition, and directional variance of collagen fibers were maximized for wounds treated with scaffolds having a substrate modulus (Ks = 24 MPa) comparable to that of collagen fibers. The enhanced regenerative response in these scaffolds was correlated with down-regulation of Wnt/ß-catenin signaling in fibroblasts, as well as increased polarization of macrophages toward the restorative M2 phenotype. These observations highlight the substrate modulus of the scaffold as a key parameter regulating the regenerative versus scarring phenotype in wound healing. Our findings further point to the potential use of scaffolds with substrate moduli tuned to that of the native matrix as a therapeutic approach to improve cutaneous healing.


Subject(s)
Macrophages/pathology , Regeneration/physiology , Tissue Scaffolds/chemistry , Wnt Signaling Pathway , Animals , Cells, Cultured , Collagen/chemistry , Down-Regulation , Fibroblasts/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Kinetics , Male , Neovascularization, Pathologic , Phenotype , Porosity , Pressure , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Tissue Engineering , Wnt Proteins/metabolism , Wound Healing , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...