Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
2.
Mol Ther Nucleic Acids ; 35(1): 102119, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38304728
3.
Nat Biotechnol ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195987

ABSTRACT

Microorganisms can be equipped with synthetic genetic programs for the production of targeted therapeutic molecules. Cutibacterium acnes is the most abundant commensal of the human skin, making it an attractive chassis to create skin-delivered therapeutics. Here, we report the engineering of this bacterium to produce and secrete the therapeutic molecule neutrophil gelatinase-associated lipocalin, in vivo, for the modulation of cutaneous sebum production.

4.
Mol Ther Nucleic Acids ; 34: 102066, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38034032

ABSTRACT

The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.

6.
Sci Rep ; 13(1): 16058, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749255

ABSTRACT

Cutibacterium acnes (C. acnes) is one of the most prevalent bacteria that forms the human skin microbiota. Specific phylotypes of C. acnes have been associated with the development of acne vulgaris, while other phylotypes have been linked to healthy skin. In this scenario, bacterial extracellular vesicles (EVs) play a role in the interkingdom communication role with the human host. The purpose of this study was to examine the impact of EVs generated by various phylotypes of C. acnes on inflammation and sebum production using different in vitro skin cell types. The main findings of this study reveal that the proteomic profile of the cargo embodied in the EVs reflects distinct characteristics of the different C. acnes phylotypes in terms of life cycle, survival, and virulence. The in vitro skin cell types showed an extended pro-inflammatory modulation of SLST A1 EVs consistently triggering the activation of the inflammation-related factors IL-8, IL-6, TNFα and GM-CSF, in comparison to SLST H1 and SLST H2. Additionally, an acne-prone skin model utilizing PCi-SEB and arachidonic acid as a sebum inducer, was employed to investigate the impact of C. acnes EVs on sebum regulation. Our findings indicated that all three types of EVs significantly inhibited sebum production after a 24-h treatment period, with SLST H1 EVs exhibiting the most pronounced inhibitory effect when compared to the positive control. The results of this study highlight the protective nature of C. acnes SLST H1 EVs and their potential use as a natural treatment option for alleviating symptoms associated with inflammation and oily skin.


Subject(s)
Acne Vulgaris , Extracellular Vesicles , Skin Diseases , Humans , Proteomics , Skin , Propionibacterium acnes , Factor VIII , Inflammation
9.
PLoS Comput Biol ; 19(5): e1011137, 2023 May.
Article in English | MEDLINE | ID: mdl-37253059

ABSTRACT

Gene editing characterization with currently available tools does not always give precise relative proportions among the different types of gene edits present in an edited bulk of cells. We have developed CRISPR-Analytics, CRISPR-A, which is a comprehensive and versatile genome editing web application tool and a nextflow pipeline to give support to gene editing experimental design and analysis. CRISPR-A provides a robust gene editing analysis pipeline composed of data analysis tools and simulation. It achieves higher accuracy than current tools and expands the functionality. The analysis includes mock-based noise correction, spike-in calibrated amplification bias reduction, and advanced interactive graphics. This expanded robustness makes this tool ideal for analyzing highly sensitive cases such as clinical samples or experiments with low editing efficiencies. It also provides an assessment of experimental design through the simulation of gene editing results. Therefore, CRISPR-A is ideal to support multiple kinds of experiments such as double-stranded DNA break-based engineering, base editing (BE), primer editing (PE), and homology-directed repair (HDR), without the need of specifying the used experimental approach.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Recombinational DNA Repair , DNA Breaks, Double-Stranded
10.
Nat Microbiol ; 8(1): 77-90, 2023 01.
Article in English | MEDLINE | ID: mdl-36593295

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 is an effector protein that targets invading DNA and plays a major role in the prokaryotic adaptive immune system. Although Streptococcus pyogenes CRISPR-Cas9 has been widely studied and repurposed for applications including genome editing, its origin and evolution are poorly understood. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species that last lived 2.6 billion years before the present. We demonstrate that these ancient forms were much more flexible in their guide RNA and protospacer-adjacent motif requirements compared with modern-day Cas9 enzymes. Furthermore, anCas portrays a gradual palaeoenzymatic adaptation from nickase to double-strand break activity, exhibits high levels of activity with both single-stranded DNA and single-stranded RNA targets and is capable of editing activity in human cells. Prediction and characterization of anCas with a resurrected protein approach uncovers an evolutionary trajectory leading to functionally flexible ancient enzymes.


Subject(s)
CRISPR-Cas Systems , Endonucleases , Firmicutes , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Gene Editing , Firmicutes/enzymology , Firmicutes/genetics , RNA, Guide, CRISPR-Cas Systems
11.
ACS Biomater Sci Eng ; 9(9): 5101-5110, 2023 09 11.
Article in English | MEDLINE | ID: mdl-34971313

ABSTRACT

In the past few years, new bacterial-cell-free transcription-translation systems have emerged as potent and quick platforms for protein production as well as for prototyping of DNA regulatory elements, genetic circuits, and metabolic pathways. The Gram-positive commensal Cutibacterium acnes is one of the most abundant bacteria present in the human skin microbiome. However, it has recently been reported that some C. acnes phylotypes can be associated with common inflammatory skin conditions, such as acne vulgaris, whereas others seem to play a protective role, acting as possible "skin probiotics". This fact has made C. acnes become a bacterial model of interest for the cosmetic industry. In the present study we report for the first time the development and optimization of a C. acnes-based cell-free system (CFS) that is able to produce 85 µg/mL firefly luciferase. We highlight the importance of harvesting the bacterial pellet in mid log phase and maintaining CFS reactions at 30 °C and physiological pH to obtain the optimal yield. Additionally, a C. acnes promoter library was engineered to compare coupled in vitro TX-TL activities, and a temperature biosensor was tested, demonstrating the wide range of applications of this toolkit in the synthetic biology field.


Subject(s)
Acne Vulgaris , Synthetic Biology , Humans , Skin/microbiology , Acne Vulgaris/genetics , Acne Vulgaris/microbiology , Propionibacterium acnes/genetics
12.
Genome Biol ; 23(1): 227, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284361

ABSTRACT

Comprehensive characterisation of genome engineering technologies is relevant for their development and safe use in human gene therapy. Short-read based methods can overlook insertion events in repetitive regions. We develop INSERT-seq, a method that combines targeted amplification of integrated DNA, UMI-based correction of PCR bias and Oxford Nanopore long-read sequencing for robust analysis of DNA integration. The experimental pipeline improves the number of mappable insertions at repetitive regions by 4.8-7.3% and larger repeats are processed with a computational peak calling pipeline. INSERT-seq is a simple, cheap and robust method to quantitatively characterise DNA integration in diverse ex vivo and in vivo samples.


Subject(s)
Nanopore Sequencing , Humans , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Repetitive Sequences, Nucleic Acid , DNA/genetics
13.
PLoS Pathog ; 18(3): e1010420, 2022 03.
Article in English | MEDLINE | ID: mdl-35344565

ABSTRACT

Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.


Subject(s)
Acne Vulgaris , Bacteriophages , Acne Vulgaris/genetics , Acne Vulgaris/microbiology , Bacteriophages/genetics , Epigenesis, Genetic , Humans , Propionibacterium acnes/genetics , Skin/microbiology
14.
Nat Commun ; 12(1): 7071, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862378

ABSTRACT

While multiple technologies for small allele genome editing exist, robust technologies for targeted integration of large DNA fragments in mammalian genomes are still missing. Here we develop a gene delivery tool (FiCAT) combining the precision of a CRISPR-Cas9 (find module), and the payload transfer efficiency of an engineered piggyBac transposase (cut-and-transfer module). FiCAT combines the functionality of Cas9 DNA scanning and targeting DNA, with piggyBac donor DNA processing and transfer capacity. PiggyBac functional domains are engineered providing increased on-target integration while reducing off-target events. We demonstrate efficient delivery and programmable insertion of small and large payloads in cellulo (human (Hek293T, K-562) and mouse (C2C12)) and in vivo in mouse liver. Finally, we evolve more efficient versions of FiCAT by generating a targeted diversity of 394,000 variants and undergoing 4 rounds of evolution. In this work, we develop a precise and efficient targeted insertion of multi kilobase DNA fragments in mammalian genomes.


Subject(s)
DNA Transposable Elements/genetics , Gene Editing/methods , Transposases/genetics , Animals , CRISPR-Cas Systems/genetics , Cell Line , Electroporation , Female , Humans , Liver , Male , Mice , Protein Engineering , Transposases/metabolism
15.
Front Microbiol ; 12: 789668, 2021.
Article in English | MEDLINE | ID: mdl-34970246

ABSTRACT

Some organisms have shown the ability to naturally survive in extreme environments, even outer space. Some of these have natural mechanisms to resist severe DNA damage from conditions such as ionizing and non-ionizing radiation, extreme temperatures, and low pressures or vacuum. A good example can be found in Deinococcus radiodurans, which was exposed to severe conditions such as those listed in the Exposure Facility of the International Space Station (ISS) for up to three years. Another example are tardigrades (Ramazzottius varieornatus) which are some of the most resilient animals known. In this study, the survival under simulated Low earth Orbit (LEO) environmental conditions was tested in Escherichia coli. The radiation resistance of this bacteria was enhanced using the Dsup gene from R. varieornatus, and two more genes from D. radiodurans involved in DNA damage repair, RecA and uvrD. The enhanced survival to wide ranges of temperatures and low pressures was then tested in the new strains. This research constitutes a first step in the creation of new bacterial strains engineered to survive severe conditions and adapting existing species for their survival in remote environments, including extra-terrestrial habitats. These strains could be key for the development of environments hospitable to life and could be of use for ecological restoration and space exploration. In addition, studying the efficacy and the functioning of the DNA repair mechanisms used in this study could be beneficial for medical and life sciences engineering.

16.
Microorganisms ; 9(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803499

ABSTRACT

Cutibacterium acnes is the most abundant bacterium living in human, healthy and sebum-rich skin sites, such as the face and the back. This bacterium is adapted to this specific environment and therefore could have a major role in local skin homeostasis. To assess the role of this bacterium in healthy skin, this review focused on (i) the abundance of C. acnes in the skin microbiome of healthy skin and skin disorders, (ii) its major contributions to human skin health, and (iii) skin commensals used as probiotics to alleviate skin disorders. The loss of C. acnes relative abundance and/or clonal diversity is frequently associated with skin disorders such as acne, atopic dermatitis, rosacea, and psoriasis. C. acnes, and the diversity of its clonal population, contributes actively to the normal biophysiological skin functions through, for example, lipid modulation, niche competition and oxidative stress mitigation. Compared to gut probiotics, limited dermatological studies have investigated skin probiotics with skin commensal strains, highlighting their unexplored potential.

17.
Comput Struct Biotechnol J ; 19: 624-631, 2021.
Article in English | MEDLINE | ID: mdl-33510866

ABSTRACT

Many skin conditions are associated with an imbalance in the skin microbiome. In recent years, the skin microbiome has become a hot topic, for both therapeutic and cosmetic purposes. The possibility of manipulating the human skin microbiome to address skin conditions has opened exciting new paths for therapy. Here we review the skin microbiome manipulation strategies, ranging from skin microbiome transplantation, over skin bacteriotherapy to the use of prebiotics, probiotics and postbiotics. We summarize all efforts undertaken to exchange, manipulate, transplant or selectively apply the skin microbiome to date. Multiple microbial groups have been targeted, since they have been proven to be beneficial for skin health. We focus on the most common skin disorders and their associated skin microbiome dysbiosis and we review the existing scientific data and clinical trials undertaken to combat these skin conditions. The skin microbiome represents a novel platform for therapy. Transplantation of a complete microbiome or application of single strains has demonstrated beneficial therapeutic application.

18.
Nat Biomed Eng ; 5(2): 134-143, 2021 02.
Article in English | MEDLINE | ID: mdl-32958897

ABSTRACT

The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Germ Cells/metabolism , Sus scrofa/genetics , Sus scrofa/virology , Transplantation, Heterologous , Animals , CRISPR-Associated Protein 9/genetics , Cells, Cultured , Galactosyltransferases/genetics , Gene Knockout Techniques , Mixed Function Oxygenases/genetics , N-Acetylgalactosaminyltransferases/genetics , Sus scrofa/immunology
19.
Nucleic Acids Res ; 48(9): 5183-5195, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32315033

ABSTRACT

To extend the frontier of genome editing and enable editing of repetitive elements of mammalian genomes, we made use of a set of dead-Cas9 base editor (dBE) variants that allow editing at tens of thousands of loci per cell by overcoming the cell death associated with DNA double-strand breaks and single-strand breaks. We used a set of gRNAs targeting repetitive elements-ranging in target copy number from about 32 to 161 000 per cell. dBEs enabled survival after large-scale base editing, allowing targeted mutations at up to ∼13 200 and ∼12 200 loci in 293T and human induced pluripotent stem cells (hiPSCs), respectively, three orders of magnitude greater than previously recorded. These dBEs can overcome current on-target mutation and toxicity barriers that prevent cell survival after large-scale genome engineering.


Subject(s)
Gene Editing/methods , Retroelements , CRISPR-Associated Proteins , CRISPR-Cas Systems , Cell Survival , Endodeoxyribonucleases , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Mutation , RNA
20.
Methods Mol Biol ; 2110: 139-149, 2020.
Article in English | MEDLINE | ID: mdl-32002907

ABSTRACT

The shortage of organs for transplantation is probably the biggest unmet medical need. A potential problem with the clinical use of porcine xenografts is the risk that porcine endogenous retroviruses (PERVs) could infect human cells. In the past, we determined the PERV copy number in the porcine kidney epithelial cell line PK15 and in primary fibroblasts. Using CRISPR-Cas9, we disrupted the catalytic center of pol, which is essential for virus replication. Next, we isolated cells in which 100% of the PERV elements had been inactivated. This method enables the possibility of eradicating PERVs in vitro for application to pig-to-human xenotransplantation. Here we describe the methodological bases of this work.


Subject(s)
CRISPR-Cas Systems , Endogenous Retroviruses/genetics , Gene Editing , Genome-Wide Association Study/methods , Algorithms , Animals , Cell Line , Computational Biology/methods , Gene Dosage , Gene Expression , Genes, Reporter , Genetic Vectors , Heterografts , Humans , RNA, Guide, Kinetoplastida , Swine , Transplantation, Heterologous/adverse effects , Virus Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...