Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 175(1): 486-497, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28733391

ABSTRACT

High temperatures rapidly induce a genetically programmed heat-shock response (HSR) that is essential to establish short-term acquired thermotolerance. In addition, an immediate HSR-independent metabolic response is triggered, resulting in an accumulation of unsaturated triacylglycerols (TAGs) in the cytosol. The metabolic processes involved in heat-induced TAG formation in plants and their physiological significance remain to be clarified. Lipidomic analyses of Arabidopsis (Arabidopsis thaliana) seedlings indicated that during heat stress, polyunsaturated fatty acids from thylakoid galactolipids are incorporated into cytosolic TAGs. In addition, rapid conversion of plastidic monogalactosyl diacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs, and diacylglycerols (DAGs), the direct precursor of TAGs, was observed. For TAG synthesis, DAG requires a fatty acid from the acyl-CoA pool or phosphatidylcholine. Since seedlings deficient in PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) were unable to accumulate TAGs after heat stress, phosphatidylcholine appears to be the major fatty acid donor. Results suggest that rapid plastid lipid metabolism drives TAG accumulation during heat stress. PDAT1-mediated TAG accumulation was found to increase heat resistance, since nonacclimated pdat1 mutant seedlings were more sensitive to severe heat stress, as indicated by a more dramatic decline of the maximum efficiency of PSII and lower seedling survival compared to wild-type seedlings. In contrast, nonacclimated trigalactosyldiacylglycerol1 (tgd1) mutants overaccumulating TAGs and oligogalactolipids were more resistant to heat stress. Hence, thylakoid lipid metabolism and TAG formation increases thermotolerance in addition to the genetically encoded HSR.


Subject(s)
Acyltransferases/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Heat-Shock Response , Phospholipids/metabolism , Thermotolerance , Triglycerides/metabolism , Acyltransferases/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Fatty Acids/metabolism , Galactolipids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism , Plants, Genetically Modified , Seedlings/enzymology , Seedlings/genetics , Seedlings/physiology , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...