Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38672445

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron degenerative disease that is associated with demyelination. The Wobbler (WR) mouse exhibits motoneuron degeneration, gliosis and myelin deterioration in the cervical spinal cord. Since male WRs display low testosterone (T) levels in the nervous system, we investigated if T modified myelin-relative parameters in WRs in the absence or presence of the aromatase inhibitor, anastrozole (A). We studied myelin by using luxol-fast-blue (LFB) staining, semithin sections, electron microscopy and myelin protein expression, density of IBA1+ microglia and mRNA expression of inflammatory factors, and the glutamatergic parameters glutamine synthetase (GS) and the transporter GLT1. Controls and WR + T showed higher LFB, MBP and PLP staining, lower g-ratios and compact myelin than WRs and WR + T + A, and groups showing the rupture of myelin lamellae. WRs showed increased IBA1+ cells and mRNA for CD11b and inflammatory factors (IL-18, TLR4, TNFαR1 and P2Y12R) vs. controls or WR + T. IBA1+ cells, and CD11b were not reduced in WR + T + A, but inflammatory factors' mRNA remained low. A reduction of GS+ cells and GLT-1 immunoreactivity was observed in WRs and WR + T + A vs. controls and WR + T. Clinically, WR + T but not WR + T + A showed enhanced muscle mass, grip strength and reduced paw abnormalities. Therefore, T effects involve myelin protection, a finding of potential clinical translation.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , Myelin Sheath , Testosterone , Animals , Mice , Myelin Sheath/metabolism , Myelin Sheath/drug effects , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Male , Testosterone/pharmacology , Spinal Cord/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Excitatory Amino Acid Transporter 2/metabolism , Excitatory Amino Acid Transporter 2/genetics , Microglia/drug effects , Microglia/metabolism , Microglia/pathology
2.
Front Neuroendocrinol ; 73: 101136, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38670433

ABSTRACT

Nestorone® (segesterone acetate) is a progestin with a chemical structure closely related to progesterone with high affinity and selectivity for the progesterone receptor without significant interaction with other steroid receptors. It has been developed for female and male contraception and is FDA-approved in a first long-acting contraceptive vaginal system for female contraception. Its safety has been extensively demonstrated in both preclinical and clinical studies for contraceptive indications. Nestorone was found to display neuroprotective and neuroregenerative activity in animal models of various central nervous system diseases, including multiple sclerosis, stroke, and amyotrophic lateral sclerosis. Reviewed herein are neuroprotective and myelin- regenerating properties of Nestorone in various animal models and its translational potential as a therapeutic agent for debilitating neurological diseases for which limited therapeutic options are available (Table 1).


Subject(s)
Neuroprotective Agents , Norprogesterones , Animals , Humans , Norprogesterones/pharmacology , Neuroprotective Agents/pharmacology , Nerve Regeneration/drug effects , Nerve Regeneration/physiology , Female
3.
JCI Insight ; 8(5)2023 02 02.
Article in English | MEDLINE | ID: mdl-36729672

ABSTRACT

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Subject(s)
Endothelial Cells , Estrogens , Animals , Mice , Estrogens/pharmacology , Estrogen Receptor alpha/genetics , Estradiol/pharmacology , Arteries
4.
Endocrinology ; 164(1)2022 11 14.
Article in English | MEDLINE | ID: mdl-36306407

ABSTRACT

Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3ß5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.


Subject(s)
Brain Ischemia , Neurosteroids , Stroke , Male , Animals , Mice , Progesterone , Mice, Inbred C57BL , Ischemia
5.
Cell Mol Neurobiol ; 42(1): 23-40, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34138412

ABSTRACT

Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Neuroprotective Agents , Amyotrophic Lateral Sclerosis/pathology , Animals , Disease Models, Animal , Mice , Motor Neurons , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Pregnanolone/metabolism , Pregnanolone/pharmacology , Pregnanolone/therapeutic use , Progesterone/metabolism , Progesterone/pharmacology , Progesterone/therapeutic use , Spinal Cord/metabolism
6.
Neuropharmacology ; 198: 108760, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34437904

ABSTRACT

Our previous studies showed that intranasal delivery of progesterone offers a good bioavailability and neuroprotective efficacy after experimental stroke. We have also demonstrated that progesterone receptors (PR) are essential for cerebroprotection by endogenous progesterone and by progesterone treatment. The identification of PR as a potential drug target for stroke therapy opens new therapeutic indications for selective synthetic progestins. Nestorone® (16-methylene-17α-acetoxy-19-nor-pregn-4-ene-3, 20-dione, also known as segesterone acetate) is a 19-norprogesterone derivative that more potently targets PR than progesterone. The objective of this study was to evaluate the cerebroprotective efficiency of intranasal administration of Nestorone after middle cerebral occlusion (MCAO) in mice. We show here that intranasal administration is a very efficient route to achieve a preferential delivery of Nestorone to the brain and confers a slow elimination and a sustained bioavailability. Furthermore, intranasal administration of Nestorone (at 0.08 mg/kg) improved the functional outcomes and decreased the ischemic lesion in male but not in female mice at 48 h post MCAO. Use of PRNesCre mice, selectively lacking expression of PR in neural cells, and their control PRloxP/loxP littermates showed that the cerebroprotective effects of Nestorone in male mice depended on neural PR as they were not observed in PRNesCre mice. Our findings show that intranasal delivery of Nestorone may be an efficient strategy to promote recovery after stroke in males and confirm the key role of PR in cerebroprotection. Furthermore, they point to sex differences in the response to Nestorone treatment and emphasize the necessity to include males and females in experimental studies.


Subject(s)
Ischemic Stroke/drug therapy , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Norprogesterones/administration & dosage , Norprogesterones/therapeutic use , Administration, Intranasal , Animals , Behavior, Animal/drug effects , Brain/metabolism , Female , Infarction, Middle Cerebral Artery/prevention & control , Injections, Intraperitoneal , Ischemic Stroke/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotective Agents/pharmacokinetics , Norprogesterones/pharmacokinetics , Receptors, Progesterone/antagonists & inhibitors , Sex Characteristics , Treatment Outcome
7.
J Steroid Biochem Mol Biol ; 207: 105820, 2021 03.
Article in English | MEDLINE | ID: mdl-33465418

ABSTRACT

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3ß-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRß, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.


Subject(s)
Cerebellum/metabolism , Myelin Basic Protein/genetics , Phosphoproteins/genetics , Progesterone/genetics , Animals , Cerebellum/growth & development , Gene Expression Regulation, Developmental , Mice , Progesterone/biosynthesis , Protein Binding/genetics , RNA, Messenger/genetics
8.
Mol Neurobiol ; 58(5): 2088-2106, 2021 May.
Article in English | MEDLINE | ID: mdl-33411236

ABSTRACT

Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3ß-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFß, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Motor Neurons/drug effects , Neuroprotective Agents/therapeutic use , Testosterone/therapeutic use , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Aromatase/metabolism , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Estrogen Receptor alpha/metabolism , Male , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Neuroprotective Agents/pharmacology , Receptors, Androgen/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Testosterone/metabolism , Testosterone/pharmacology , Treatment Outcome
9.
Int J Mol Sci ; 21(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722286

ABSTRACT

Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Models, Neurological , Neuroprotective Agents/metabolism , Neurosteroids/metabolism , Progesterone/metabolism , Animals , Brain/pathology , Brain Injuries/pathology , Female , Humans , Male , Membrane Proteins/metabolism , Receptors, Progesterone/metabolism , Sex Characteristics
10.
Int J Mol Sci ; 21(6)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244957

ABSTRACT

Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic-pituitary-adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine-threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.


Subject(s)
Neurodegenerative Diseases/drug therapy , Receptors, Glucocorticoid/metabolism , Animals , Corticosterone/blood , Corticosterone/chemistry , Disease Models, Animal , Humans , Inflammation/blood , Inflammation/complications , Models, Biological , Neurodegenerative Diseases/blood , Receptors, Glucocorticoid/antagonists & inhibitors
11.
Neuropharmacology ; 170: 108038, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32151648

ABSTRACT

Intranasal administration is emerging as a very promising route to deliver therapeutics to the brain. We have recently shown that the intranasal delivery of progesterone at 8 mg/kg is neuroprotective after stroke in male mice. To explore the translational potential of intranasal progesterone treatment, we performed a dose-response study and analyzed outcomes at 48 h after middle cerebral artery occlusion (MCAO). The effects on functional outcomes at long-term were examined by using the optimal dose. In the first experiment, male C57BL/6JRj mice were treated with progesterone at 8, 16 or 24 mg/kg, or with placebo at 1, 6 and 24 h post-MCAO. Our results show that the dose of 8 mg/kg was optimal in counteracting the early histopathological impairments as well as in improving functional recovery. Steroid profiling in plasma showed that the dose of 8 mg/kg is the one that leads to sustained high levels of progesterone and its neuroactive metabolites. In the second experiment, the dose of 8 mg/kg was used and analyzes were performed at 2, 7 and 21 days post-MCAO. Progesterone increased survival, glycemia and body weight. Furthermore, progesterone decreased neurological deficits and improved performances of mice on the rotarod and pole as early as 2 days and up to 21 days post-MCAO. These findings show that intranasal administration of progesterone has a significant translational potential as a cerebroprotective treatment after stroke that can be effective to reduce mortality, to limit tissue and cell damage at the acute phase; and to confer a long-term functional recovery.


Subject(s)
Brain Ischemia/drug therapy , Brain/drug effects , Drug Delivery Systems/methods , Ischemic Stroke/drug therapy , Neuroprotective Agents/administration & dosage , Progesterone/administration & dosage , Administration, Intranasal , Animals , Brain/metabolism , Brain/pathology , Brain Ischemia/blood , Brain Ischemia/pathology , Dose-Response Relationship, Drug , Gels , Ischemic Stroke/blood , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents/blood , Progesterone/blood
12.
Neuropharmacology ; 145(Pt B): 283-291, 2019 02.
Article in English | MEDLINE | ID: mdl-29885423

ABSTRACT

Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Subject(s)
Brain Injuries/drug therapy , Neuroprotective Agents/administration & dosage , Progesterone/administration & dosage , Administration, Intranasal , Animals , Humans , Neuroprotective Agents/pharmacokinetics , Progesterone/pharmacokinetics
13.
J Steroid Biochem Mol Biol ; 185: 90-102, 2019 01.
Article in English | MEDLINE | ID: mdl-30031789

ABSTRACT

Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.


Subject(s)
Hypoxia-Ischemia, Brain/prevention & control , Microglia/cytology , Motor Activity/drug effects , Neuroprotective Agents/therapeutic use , Oligodendroglia/cytology , Progesterone/therapeutic use , Stroke/drug therapy , Stroke/pathology , Animals , Aquaporin 4/metabolism , Hypoxia-Ischemia, Brain/drug therapy , Infarction, Middle Cerebral Artery/pathology , Lectins, C-Type/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/pathology , Oligodendroglia/drug effects , Oligodendroglia/pathology , Receptors, Cell Surface/metabolism , Receptors, Progesterone/metabolism
14.
Cell Mol Neurobiol ; 39(4): 551-568, 2019 May.
Article in English | MEDLINE | ID: mdl-30302630

ABSTRACT

Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.


Subject(s)
Progesterone/metabolism , Stroke/metabolism , Animals , Female , Humans , Male , Neuroprotection , Receptors, Progesterone/metabolism , Sex Characteristics , Signal Transduction
15.
Front Aging Neurosci ; 9: 406, 2017.
Article in English | MEDLINE | ID: mdl-29270123

ABSTRACT

The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.

16.
J Neurosci ; 37(45): 10998-11020, 2017 11 08.
Article in English | MEDLINE | ID: mdl-28986464

ABSTRACT

Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.


Subject(s)
Neurons , Progesterone/genetics , Receptors, Progesterone/genetics , Stroke/genetics , Stroke/prevention & control , Aging , Animals , Brain Chemistry/genetics , Female , Gene Deletion , Infarction, Middle Cerebral Artery/pathology , Male , Mice , Mice, Inbred C57BL , Neuroprotective Agents , Pregnenolone/metabolism , Progesterone/metabolism , Receptors, Progesterone/metabolism , Sex Characteristics
17.
J Steroid Biochem Mol Biol ; 174: 201-216, 2017 11.
Article in English | MEDLINE | ID: mdl-28951257

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating disorder characterized by progressive death of motoneurons. The Wobbler (WR) mouse is a preclinical model sharing neuropathological similarities with human ALS. We have shown that progesterone (PROG) prevents the progression of motoneuron degeneration. We now studied if allopregnanolone (ALLO), a reduced metabolite of PROG endowed with gabaergic activity, also prevents WR neuropathology. Sixty-day old WRs remained untreated or received two steroid treatment regimens in order to evaluate the response of several parameters during early or prolonged steroid administration. ALLO was administered s.c. daily for 5days (4mg/kg) or every other day for 32days (3, 3mg/kg), while another group of WRs received a 20mg PROG pellet s.c. for 18 or 60days. ALLO administration to WRs increased ALLO serum levels without changing PROG and 5 alpha dihydroprogesterone (5α-DHP), whereas PROG treatment increased PROG, 5α-DHP and ALLO. Untreated WRs showed higher basal levels of serum 5α-DHP than controls. In the cervical spinal cord we studied markers of oxidative stress or associated to trophic responses. These included nitric oxide synthase (NOS) activity, motoneuron vacuolation, MnSOD immunoreactivity (IR), brain derived neurotrophic factor (BDNF) and TrkB mRNAs, p75 neurotrophin receptor (p75NTR) and, cell survival or death signals such as pAKT and the stress activated kinase JNK. Untreated WRs showed a reduction of MnSOD-IR and BDNF/TrkB mRNAs, associated to high p75NTR in motoneurons, neuronal and glial NOS hyperactivity and neuronal vacuolation. Also, low pAKT, mainly in young WRs, and a high pJNK in the old stage characterized WRs spinal cord. Except for MnSOD and BDNF, these alterations were prevented by an acute ALLO treatment, while short-term PROG elevated MnSOD. Moreover, after chronic administration both steroids enhanced MnSOD-IR and BDNF mRNA, while attenuated pJNK and NOS in glial cells. Long-term PROG also increased pAKT and reduced neuronal NOS, parameters not modulated by chronic ALLO. Clinically, both steroids improved muscle performance. Thus, ALLO was able to reduce neuropathology in this model. Since high oxidative stress activates p75NTR and pJNK in neurodegeneration, steroid reduction of these molecules may provide adequate neuroprotection. These data yield the first evidence that ALLO, a gabaergic neuroactive steroid, brings neuroprotection in a model of motoneuron degeneration.


Subject(s)
Nerve Degeneration/drug therapy , Neuroprotective Agents/therapeutic use , Pregnanolone/therapeutic use , Amyotrophic Lateral Sclerosis , Animals , Brain-Derived Neurotrophic Factor/genetics , Choline O-Acetyltransferase/metabolism , Disease Models, Animal , Female , Male , Mice , Motor Neurons/drug effects , Motor Neurons/pathology , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Neuroprotective Agents/blood , Neuroprotective Agents/pharmacology , Nitric Oxide Synthase/metabolism , Pregnanolone/blood , Pregnanolone/pharmacology , Progesterone/blood , Progesterone/pharmacology , Progesterone/therapeutic use , Receptor, trkB/genetics , Receptors, Nerve Growth Factor/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase/metabolism
18.
J Steroid Biochem Mol Biol ; 165(Pt B): 421-429, 2017 01.
Article in English | MEDLINE | ID: mdl-27597394

ABSTRACT

Previous studies of experimental autoimmune encephalomyelitis (EAE) have shown that progesterone decreases inflammatory cell infiltration and proinflammatory factors, increases myelination and attenuates clinical grade of EAE mice. To elucidate potential mediators of these effects, we analyzed the mRNA expression of neurosteroidogenic enzymes in the spinal cord, in view of the protective role of steroids in EAE. We also analyzed mitochondrial morphology and dynamics (fusion and fission proteins), considering the role of mitochondria in neurosteroidogenesis. EAE was induced in C57Bl6 mice using MOG40-54 and killed on day 16 after induction. Using qPCR, we found in steroid-untreated EAE mice decreased mRNAs for the steroidogenic acute regulatory protein (Star), voltage-dependent anion channel (VDAC), P450scc (cholesterol side-chain cleavage), 5α-reductase, 3α-hydroxysteroid dehydrogenase (3α-HSD) and aromatase, whereas levels of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) showed a large intra-group variance. We also found increased mRNA expression of 18Kd translocator protein (TSPO), which likely resulted from the reactive microgliosis in this model. EAE mice also showed pathological mitochondrial morphology and reduced expression of fission and fusion protein mRNAs. Most importantly, pretreatment with progesterone a week before EAE induction increased Star,VDAC, P450scc, 5α-reductase type I, 3α-HSD and aromatase mRNAs and did not modify 3ß-HSD. TSPO mRNA was decreased, consequent with the inhibition of microgliosis. Mitochondrial morphology was improved and fission/fusion protein mRNAs were enhanced by progesterone treatment. Furthermore, progesterone protective effects on mitochondrial and endoplasmic reticulum may allow the recovery of neurosteroidogenesis. In this way, endogenously synthesized neurosteroids may reinforce the beneficial effects of exogenous progesterone previously shown in MS mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Neurotransmitter Agents/metabolism , Progesterone/metabolism , RNA, Messenger/metabolism , 17-Hydroxysteroid Dehydrogenases/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Cholestenone 5 alpha-Reductase/metabolism , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Mice , Mice, Inbred C57BL , Microscopy, Electron , Mitochondria/metabolism , Multiple Sclerosis/drug therapy , Phosphoproteins/metabolism , Spinal Cord/metabolism
19.
Endocrinology ; 157(11): 4446-4460, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27571131

ABSTRACT

The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , 17-Ketosteroids/blood , 17-Ketosteroids/metabolism , Adrenal Glands/metabolism , Amyotrophic Lateral Sclerosis/blood , Androstanols/blood , Androstanols/metabolism , Animals , Brain/metabolism , Corticosterone/blood , Corticosterone/metabolism , Disease Models, Animal , Female , Gas Chromatography-Mass Spectrometry , Gonadotropin-Releasing Hormone/metabolism , Luteinizing Hormone/blood , Male , Mice , Motor Neurons/metabolism , Motor Neurons/physiology , Pregnanolone/blood , Pregnanolone/metabolism , Progesterone/blood , Progesterone/metabolism , Spinal Cord/metabolism , Testis/metabolism , Testosterone/blood , Testosterone/metabolism
20.
J Steroid Biochem Mol Biol ; 160: 53-66, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26598278

ABSTRACT

Since the first pioneering studies in the 1990s, a large number of experimental animal studies have demonstrated the neuroprotective efficacy of progesterone for brain disorders, including traumatic brain injury (TBI). In addition, this steroid has major assets: it easily crosses the blood-brain-barrier, rapidly diffuses throughout the brain and exerts multiple beneficial effects by acting on many molecular and cellular targets. Moreover, progesterone therapies are well tolerated. Notably, increased brain levels of progesterone are part of endogenous neuroprotective responses to injury. The hormone thus emerged as a particularly promising protective candidate for TBI and stroke patients. The positive outcomes of small Phase 2 trials aimed at testing the safety and potential protective efficacy of progesterone in TBI patients then provided support and guidance for two large, multicenter, randomized and placebo-controlled Phase 3 trials, with more than 2000 TBI patients enrolled. The negative outcomes of both trials, named ProTECT III and SyNAPSE, came as a big disappointment. If these trials were successful, progesterone would have become the first efficient neuroprotective drug for brain-injured patients. Thus, progesterone has joined the numerous neuroprotective candidates that have failed in clinical trials. The aim of this review is a reappraisal of the preclinical animal studies, which provided the proof of concept for the clinical trials, and we critically examine the design of the clinical studies. We made efforts to present a balanced view of the strengths and limitations of the translational studies and of some serious issues with the clinical trials. We place particular emphasis on the translational value of animal studies and the relevance of TBI biomarkers. The probability of failure of ProTECT III and SyNAPSE was very high, and we present them within the broader context of other unsuccessful trials.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain/drug effects , Neuroprotective Agents/therapeutic use , Progesterone/therapeutic use , Animals , Brain/metabolism , Brain/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Clinical Trials as Topic , Drug Evaluation, Preclinical , Humans , Models, Animal , Neuroprotection/drug effects , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Progesterone/metabolism , Progesterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...