Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Clin Pharmacol Ther ; 57(10): 506-519, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31397274

ABSTRACT

OBJECTIVE: Mycophenolate mofetil (MMF) is widely used as an immunosuppressant for the prophylaxis of acute organ rejection in recipients of solid organ transplants. MATERIALS AND METHODS: We have compared, in healthy subjects, the pharmacokinetics of mycophenolic acid when MMF was administered in the form of the innovator product CellCept (F. Hoffmann-La Roche Ltd.) or one of three commercially available generics, Renodapt (Biocon Ltd.), Mycept (Panacea Biotec), or Cellmune (Cipla Ltd.). The study was powered to detect a 20% difference in mean formulation performance measures, but not to formally evaluate bioequivalence. Geometric mean ratios of maximum concentrations (Cmax) and areas under plasma concentration-time curves were calculated. RESULTS: Comparing generics against each other, the differences in point estimates of the geometric mean ratios of Cmax of two of the comparisons were either borderline within (Renodapt/Cellmune) or clearly outside (Mycept/Cellmune) a region of 80 - 125% around the reference mean, indicating that bioequivalence between these generics may be difficult to show. CONCLUSION: Physicians in the field of transplantation should be aware of the potential risk of altering the therapeutic outcome when switching from one preparation of MMF to another. ClinicalTrials.gov identifier: NCT02981290.


Subject(s)
Drugs, Generic/pharmacokinetics , Immunosuppressive Agents/pharmacokinetics , Mycophenolic Acid/pharmacokinetics , Therapeutic Equivalency , Cross-Over Studies , Graft Rejection , Humans
2.
Toxicol Lett ; 138(1-2): 29-49, 2003 Feb 18.
Article in English | MEDLINE | ID: mdl-12559691

ABSTRACT

The present paper proposes a modeling and simulation strategy for the prediction of pharmacokinetics (PK) of drug candidates by using currently available in silico and in vitro based prediction tools for absorption, distribution, metabolism and excretion (ADME). These methods can be used to estimate specific ADME parameters (such as rate and extent of absorption into portal vein, volume of distribution, metabolic clearance in the liver). They can also be part of a physiologically based pharmacokinetic (PBPK) model to simulate concentration-time profiles in tissues and plasma resulting from the overall PK after intravenous or oral administration. Since the ADME prediction tools are built only on commonly generated in silico and in vitro data, they can be applied already in early drug discovery, prior to any in vivo study. With the suggested methodology, the following advantages of the mechanistic PBPK modeling framework can now be utilized to explore potential clinical candidates already in drug discovery: (i) prediction of plasma (blood) and tissue PK of drug candidates prior to in vivo experiments, (ii) supporting a better mechanistic understanding of PK properties, as well as helping the development of more rationale PK-PD relationships from tissue kinetic data predicted, and hence facilitating a more rational decision during clinical candidate selection, and (iii) the extrapolation across species, routes of administration and dose levels.


Subject(s)
Drug Evaluation, Preclinical/methods , Drug Evaluation/methods , Drugs, Investigational/pharmacokinetics , Drugs, Investigational/toxicity , Models, Biological , Animals , Drugs, Investigational/classification , Humans , Quantitative Structure-Activity Relationship , Rats , Solubility , Species Specificity
3.
Biochem Pharmacol ; 64(11): 1637-50, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-12429353

ABSTRACT

The influence of the isolation procedure of hepatocytes, extracellular matrix (ECM) configuration and incubation medium supplementation by dexamethasone (DEX) on the cell morphology and on the gene expression of membrane transporters was examined in rat hepatocytes. The mRNA levels were determined using oligonucleotide microarrays, in liver, in suspension and in primary culture in monolayer (CPC), and in collagen gels sandwich (SPC) in absence and presence of DEX (100 and 1000 nM). The results indicated pronounced morphological differences between CPC and SPC in response to DEX demonstrating that the hepatocytes re-formed, as in vivo, multicellular arrays with extensive bile canalicular network only in SPC in presence of DEX. The mRNA levels of membrane transporters were not affected significantly during isolation procedure. However, plating hepatocytes in CPC resulted in a decrease of major basolateral transporters mRNA level whereas mRNA levels of mdr1b and mrp3 were increased (>100-fold). Similar observations were made in SPC in the absence of DEX demonstrating that the ECM configuration alone did not play a critical role in the regulation of membrane transporters. However, adding DEX to the incubation medium in SPC resulted in an up-regulation of mdr2, oatp2 and mrp2 in a concentration-dependent way for the two latter genes, whereas mdr1b and mrp3 expression were maintained to their baseline liver levels. These data suggested therefore that the combination of ECM and DEX supplementation is essential for the formation of the bile canalicular network and is a determinant factor in the regulation of membrane transporters in cultured rat hepatocytes.


Subject(s)
Dexamethasone/pharmacology , Extracellular Matrix/drug effects , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Membrane Transport Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B/biosynthesis , ATP-Binding Cassette Transporters/biosynthesis , Animals , Cell Size/drug effects , Cells, Cultured , Chemokines, CC/biosynthesis , Hepatocytes/physiology , Macrophage Inflammatory Proteins/biosynthesis , Membrane Transport Proteins/biosynthesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...