Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 176: 116879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850666

ABSTRACT

Cannabinoid CB2 agonists show therapeutic efficacy without unwanted CB1-mediated side effects. The G protein-biased CB2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks development of morphine tolerance in this model. However, the cell types involved in this phenomenon are unknown and whether this therapeutic profile is observed in female mice has never been investigated. We used conditional deletion of CB2 receptors to determine the cell population(s) mediating the anti-allodynic and morphine-sparing effects of CB2 agonists. Anti-allodynic effects of structurally distinct CB2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB2f/f mice and in mice lacking CB2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1CRE/+; CB2f/f), but were absent in mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male, but not female, mice. LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the development of morphine tolerance in male CB2f/f and CX3CR1CRE/+; CB2f/f mice with established paclitaxel-induced neuropathy but was absent in male (or female) AdvillinCRE/+; CB2f/f mice. Co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed morphine tolerance in paclitaxel-treated male CB2f/f mice, but not AdvillinCRE/+; CB2f/f mice of either sex. LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical or cold allodynia in either CB2f/f or CX3CR1CRE/+; CB2f/f mice of either sex. Our findings have potential clinical implications.


Subject(s)
Drug Tolerance , Morphine , Neuralgia , Paclitaxel , Receptor, Cannabinoid, CB2 , Sensory Receptor Cells , Animals , Male , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Female , Morphine/pharmacology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/metabolism , Drug Tolerance/physiology , Mice , Neuralgia/chemically induced , Neuralgia/drug therapy , Neuralgia/metabolism , Nociception/drug effects , Mice, Inbred C57BL , Sex Characteristics , Mice, Knockout , Cannabinoid Receptor Agonists/pharmacology
2.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496640

ABSTRACT

Cannabinoid CB 2 agonists show therapeutic efficacy without the unwanted side effects commonly associated with direct activation of CB 1 receptors. The G protein-biased CB 2 receptor agonist LY2828360 attenuates the maintenance of chemotherapy-induced neuropathic nociception in male mice and blocks the development of morphine tolerance in this model. However, the specific cell types involved in this phenomenon have never been investigated and whether this therapeutic profile is observed in female mice remains poorly understood. We used conditional deletion of CB 2 receptors from specific cell populations to determine the population(s) mediating the anti-allodynic and morphine-sparing effects of CB 2 agonists. Anti-allodynic effects of structurally distinct CB 2 agonists (LY2828360 and AM1710) were present in paclitaxel-treated CB 2 f/f mice of either sex. The anti-allodynic effect of the CB 2 agonists were absent in conditional knockout (KO) mice lacking CB 2 receptors in peripheral sensory neurons (Advillin CRE/+ ; CB 2 f/f ) but preserved in mice lacking CB 2 receptors in CX3CR1 expressing microglia/macrophages (CX3CR1 CRE/+ ; CB 2 f/f ). The morphine-sparing effect of LY28282360 occurred in a sexually-dimorphic manner, being present in male mice but absent in female mice of any genotype. In mice with established paclitaxel-induced neuropathy, prior LY2828360 treatment (3 mg/kg per day i.p. x 12 days) blocked the subsequent development of morphine tolerance in male CB 2 f/f mice but was absent in male (or female) Advillin CRE/+ ; CB 2 f/f mice. LY2828360-induced sparing of morphine tolerance was preserved in male CX3CR1 CRE/+ ; CB 2 f/f mice, but this effect was not observed in female CX3CR1 CRE/+ ; CB 2 f/f mice. Similarly, co-administration of morphine with a low dose of LY2828360 (0.1 mg/kg per day i.p. x 6 days) reversed tolerance to the anti-allodynic efficacy of morphine in paclitaxel-treated male CB 2 f/f mice, but this effect was absent in female CB 2 f/f mice and Advillin CRE/+ ; CB 2 f/f mice of either sex. Additionally, LY2828360 (3 mg/kg per day i.p. x 8 days) delayed, but did not prevent, the development of paclitaxel-induced mechanical and cold allodynia in either CB 2 f/f or CX3CR1 CRE/+ ; CB 2 f/f mice of either sex. Our studies reveal that CB 2 receptors in primary sensory neurons are required for the anti-allodynic effects of CB 2 agonists in a mouse model of paclitaxel-induced neuropathic nociception. We also find that CB 2 agonists acting on primary sensory neurons produce a sexually-dimorphic sparing of morphine tolerance in males, but not female, paclitaxel-treated mice.

3.
Neuropharmacology ; 237: 109601, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37286073

ABSTRACT

CB2 cannabinoid receptor agonists suppress pathological pain in animal models and lack unwanted side effects commonly associated with direct activation of CB1 receptors. However, the types of pain most responsive to CB2 agonists are incompletely understood and cell types which underlie CB2-mediated therapeutic efficacy remain largely unknown. We previously reported that the CB2 receptor agonist LY2828360 reduced neuropathic nociception induced by toxic challenge with chemotherapeutic and anti-retroviral agents in mice. Whether these findings generalize to models of inflammatory pain is not known. Here we show that LY2828360 (10 mg/kg i.p.) reversed the maintenance of carrageenan-induced mechanical allodynia in female mice. Anti-allodynic efficacy was fully preserved in global CB1 knock out (KO) mice but absent in CB2 KO mice. The anti-allodynic efficacy of LY2828360 was absent in conditional KO (cKO) mice lacking CB2 receptors in peripheral sensory neurons (AdvillinCRE/+; CB2f/f) and preserved in cKO mice lacking CB2 receptors in microglia/macrophages expressing C-X3-C Motif Chemokine Receptor 1 (CX3CR1CRE/+; CB2f/f). Intraplantar administration of LY2828360 (30 µg i.pl.) reversed carrageenan-induced mechanical allodynia in CB2f/f but not AdvillinCRE/+; CB2f/f mice of both sexes. Thus, CB2 receptors in peripheral sensory neurons likely underlie the therapeutic effects of LY2828360 injection in the paw. Lastly, qRT-PCR analyses revealed that LY2828360 reduced carrageenan-induced increases in IL-1ß and IL-10 mRNA in paw skin. Our results suggest that LY2828360 suppresses inflammatory nociception in mice through a neuronal CB2-dependent mechanism that requires peripheral sensory neuron CB2 receptors and suggest that the clinical applications of LY2828360 as an anti-hyperalgesic agent should be re-evaluated.


Subject(s)
Hyperalgesia , Pain , Animals , Female , Male , Mice , Analgesics/pharmacology , Analgesics/therapeutic use , Carrageenan/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Pain/drug therapy , Receptor, Cannabinoid, CB1 , Receptor, Cannabinoid, CB2/genetics , Receptors, Cannabinoid , Sensory Receptor Cells
4.
Psychopharmacology (Berl) ; 235(11): 3315-3327, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30251163

ABSTRACT

RATIONALE: To determine the conditions under which tastes paired with delayed access to experimenter-delivered cocaine and morphine elicit a conditionally aversive affective state. OBJECTIVES AND METHODS: The potential of saccharin paired with immediate access to cocaine (5, 10, 20 mg/kg, sc and ip) and delayed (30 and 10 min) access to cocaine (20 mg/kg, sc and ip) and morphine (10 mg/kg, sc) to elicit a pattern of aversive responding in the taste reactivity test (Grill and Norgren 1978a) was evaluated. Cocaine-induced aversions were compared with those produced by a moderate dose of LiCl (50 mg/kg). Finally, as an independent measure of cocaine withdrawal, the potential of exposure to saccharin paired with delayed access to cocaine to produce anxiogenic-like responding in the Light-Dark Emersion test was evaluated. RESULTS: Immediate access to cocaine did not produce conditioned aversion at any dose. Delayed (30 or 10 min) access to sc cocaine (20 mg/kg) produced robust conditioned aversion and delayed access to ip cocaine (20 mg/kg; 30 min) and to sc morphine (10 mg/kg; 10 min) produced weaker conditioned aversion. Yawning emerged as a potential withdrawal response in rats conditioned with delayed (30 min) access to 20 mg/kg, sc, cocaine. Contextual cues did not produce conditioned aversion when paired with delayed access to sc cocaine (20 mg/kg). Finally, exposure to saccharin paired with delayed access to cocaine produced anxiogenic-like responding in the Light-Dark Emersion test. CONCLUSION: Our results support the contention that a conditioned aversive state develops when a taste cue comes to predict the delayed availability of drugs of abuse.


Subject(s)
Avoidance Learning/drug effects , Cocaine/administration & dosage , Conditioning, Classical/drug effects , Morphine/administration & dosage , Taste/drug effects , Analgesics, Opioid/administration & dosage , Anesthetics, Local/administration & dosage , Animals , Avoidance Learning/physiology , Conditioning, Classical/physiology , Cues , Male , Rats , Rats, Sprague-Dawley , Saccharin/administration & dosage , Taste/physiology , Time Factors
5.
Br J Pharmacol ; 175(1): 100-112, 2018 01.
Article in English | MEDLINE | ID: mdl-29057454

ABSTRACT

BACKGROUND AND PURPOSE: The aim of this study was to compare the abilities of cannabidiolic acid methyl ester (HU-580) and cannabidiolic acid (CBDA) to enhance 5-HT1A receptor activation in vitro and produce 5-HT1A -mediated reductions in nausea and anxiety in vivo. EXPERIMENTAL APPROACH: We investigated the effects of HU-580 and CBDA on (i) activation by 8-hydroxy-2-(di-n-propylamino)tetralin of human 5-HT1A receptors in CHO cell membranes, using [35 S]-GTPγS binding assays, (ii) gaping by rats in acute and anticipatory nausea models, and (iii) stress-induced anxiety-like behaviour, as indicated by exit time from the light compartment of a light-dark box of rats subjected 24 h earlier to six tone-paired foot shocks. KEY RESULTS: HU-580 and CBDA increased the Emax of 8-hydroxy-2-(di-n-propylamino) tetralin in vitro at 0.01-10 and 0.1-10 nM, respectively, and reduced signs of (i) acute nausea at 0.1 and 1 µg·kg-1 i.p. and at 1 µg·kg-1 i.p., respectively, and (ii) anticipatory nausea at 0.01 and 0.1 µg·kg-1 , and at 0.1 µg·kg-1 i.p. respectively. At 0.01 µg·kg-1 , HU-580, but not CBDA, increased the time foot-shocked rats spent in the light compartment of a light-dark box. The anti-nausea and anti-anxiety effects of 0.01 or 0.1 µg·kg-1 HU-580 were opposed by the 5-HT1A antagonist, WAY100635 (0.1 mg·kg-1 i.p.). CONCLUSIONS AND IMPLICATIONS: HU-580 is more potent than CBDA at enhancing 5-HT1A receptor activation, and inhibiting signs of acute and anticipatory nausea, and anxiety. Consequently, HU-580 is a potential medicine for treating some nausea and anxiety disorders and possibly other disorders ameliorated by enhancement of 5-HT1A receptor activation.


Subject(s)
Anxiety/drug therapy , Cannabinoids/therapeutic use , Nausea/drug therapy , Receptor, Serotonin, 5-HT1A/physiology , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Animals , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/therapeutic use , Antiemetics/chemistry , Antiemetics/therapeutic use , Anxiety/physiopathology , CHO Cells , Cannabinoids/chemistry , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Male , Nausea/physiopathology , Rats , Rats, Sprague-Dawley , Serotonin 5-HT1 Receptor Agonists/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...