Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 131(6): 2941-2956, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34028142

ABSTRACT

AIM: Arbuscular mycorrhizal fungi (AMF) are often regarded as non-specific symbionts, but some AMF communities show host preference in various ecosystems including vineyards. Grapevine plants are very responsive to AMF colonization. Although these fungi have potentially significant applications for sustainable agricultural ecosystems, there is a gap in knowledge regarding AMF-grapevine interactions worldwide and especially in New Zealand. This study focused on identifying AMF taxa colonizing grapevines in New Zealand vineyards and investigated the effect of grapevine rootstocks on AMF community diversity and composition. METHODS AND RESULTS: Denaturing gradient gel electrophoresis (DGGE) and trap cultures were used to characterize the AMF communities. Grapevine roots from three vineyards and nine rootstocks were analysed by DGGE and used in trap cultures for AMF recovery. Trap cultures allowed the recovery of six AMF spore morphotypes that belonged to Ambispora sp., Claroideoglomus sp., Funneliformis sp. and Glomus sp. Bands excised, reamplified and sequenced from the DGGE were assigned to Glomus sp., Rhizophagus sp. and Claroideoglomus sp. The AMF community analyses demonstrated that rootstock significantly (P < 0·05) influenced the AMF community composition in all sites. CONCLUSIONS: The study showed that for a comprehensive identification of AMF, both results from trap culture and molecular work were needed and that the rootstock cultivar was the main driver of the arbuscular mycorrhizal community colonizing the roots. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides a firm foundation for future research exploring the beneficial use of AMF in enhancing grapevine production and sustainability.


Subject(s)
Mycorrhizae , Ecosystem , Farms , Fungi , Mycorrhizae/genetics , New Zealand , Plant Roots , Soil Microbiology
2.
Can J Microbiol ; 46(9): 790-9, 2000 Sep.
Article in English | MEDLINE | ID: mdl-11006839

ABSTRACT

The mycorrhizal relationships between pines and two edible species of Lactarius sect. Dapetes were investigated by optimizing the experimental conditions of mycelial growth and of mycorrhizal colonization of pine seedlings. In vitro mycelial growth of Lactarius deliciosus and L. sanguifluus was improved on a buffered medium containing glucose, amino acids, and vitamins. Two methods of mycorrhization of pines with Lactarius deliciosus were tested. The mycorrhizal colonization was rapid and intense under non-aseptic conditions with a low nutrient supply and without exogenous glucose. A positive influence of mycorrhizal colonization on Pinus sylvestris growth was subsequently observed. Under axenic conditions and with a high nutrient supply, mycorrhization was stimulated at 10 g/L of exogenous glucose, irrespective of the phosphorus concentration. At high phosphorus level (1 mM) and 0.1, 1.0, or 10.0 g/L glucose, growth of Pinus sylvestris was reduced by inoculation. Stability and development of Pinus spp./Lactarius deliciosus symbioses were assayed in a climatic chamber using containers filled with a synthetic substrate. Over a 2-year culture period, the root systems of the pine seedlings were heavily colonized by Lactarius deliciosus. One year following inoculation, Lactarius deliciosus fruit-body primordia appeared associated with Pinus sylvestris seedlings. Six months later, two mature basidiomata were obtained. This is the first report of soilless fruit-body formation of this edible mushroom.


Subject(s)
Basidiomycota/growth & development , Cycadopsida/microbiology , Plant Roots/microbiology , Culture Media , Pinus sylvestris , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...