Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 45: 106-116, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29472074

ABSTRACT

PURPOSE: To investigate the feasibility of using the ratio of dose-area product at 20 cm and 10 cm water depths (DAPR20,10) as a beam quality specifier for radiotherapy photon beams with field diameter below 2 cm. METHODS: Dose-area product was determined as the integral of absorbed dose to water (Dw) over a surface larger than the beam size. 6 MV and 10 MV photon beams with field diameters from 0.75 cm to 2 cm were considered. Monte Carlo (MC) simulations were performed to calculate energy-dependent dosimetric parameters and to study the DAPR20,10 properties. Aspects relevant to DAPR20,10 measurement were explored using large-area plane-parallel ionization chambers with different diameters. RESULTS: DAPR20,10 was nearly independent of field size in line with the small differences among the corresponding mean beam energies. Both MC and experimental results showed a dependence of DAPR20,10 on the measurement setup and the surface over which Dw is integrated. For a given setup, DAPR20,10 values obtained using ionization chambers with different air-cavity diameters agreed with one another within 0.4%, after the application of MC correction factors accounting for effects due to the chamber size. DAPR20,10 differences among the small field sizes were within 1% and sensitivity to the beam energy resulted similar to that of established beam quality specifiers based on the point measurement of Dw. CONCLUSIONS: For a specific measurement setup and integration area, DAPR20,10 proved suitable to specify the beam quality of small photon beams for the selection of energy-dependent dosimetric parameters.


Subject(s)
Photons/therapeutic use , Radiometry/methods , Radiotherapy Dosage , Air , Cobalt Radioisotopes/therapeutic use , Computer Simulation , Monte Carlo Method , Particle Accelerators , Uncertainty , Water
2.
J Appl Clin Med Phys ; 16(1): 5186, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25679175

ABSTRACT

The purpose of this study was to compare the dosimetric properties of small field electron beams shaped by circular Cerrobend blocks and stainless steel tubular applicators. Percentage depth dose curves, beam profiles, and output factors of small-size circular fields from 2 to 5 cm diameter, obtained either by tubular applicators and Cerrobend blocks, were measured for 6, 10, and 15 MeV electron beam energies. All measurements were performed using a PTW microDiamond 60019 premarket prototype. An overall similar behavior between the two collimating systems can be observed in terms of PDD and beam profiles. However, Cerrobend collimators produce a higher bremsstrahlung background under irradiation with high-energy electrons. In such irradiation condition, larger output factors are observed for tubular applicators. Similar dosimetric properties are observed using circular Cerrobend blocks and stainless steel tubular applicators at lower beam energies. However, Cerrobend collimators allow the delivery of specific beam shapes, conformed to the target area. On the other hand, in high-energy irradiation conditions, tubular applicators produce a lower bremsstrahlung contribution, leading to lower doses outside the target volume. In addition, the higher output factors observed at high energies for tubular applicators lead to reduced treatment times.


Subject(s)
Electrons/therapeutic use , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, High-Energy/instrumentation , Radiotherapy, Intensity-Modulated/methods , Humans , Radiometry , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...