Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(3-2): 035002, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849112

ABSTRACT

Thin sheets respond to confinement by smoothly wrinkling or by focusing stress into small, sharp regions. From engineering to biology, geology, textiles, and art, thin sheets are packed and confined in a wide variety of ways, and yet fundamental questions remain about how stresses focus and patterns form in these structures. Using experiments and molecular dynamics simulations, we probe the confinement response of circular sheets, flattened in their central region and quasistatically drawn through a ring. Wrinkles develop in the outer, free region, then are replaced by a truncated cone, which forms in an abrupt transition to stress focusing. We explore how the force associated with this event, and the number of wrinkles, depend on geometry. Additional cones sequentially pattern the sheet until axisymmetry is recovered in most geometries. The cone size is sensitive to in-plane geometry. We uncover a coarse-grained description of this geometric dependence, which diverges depending on the proximity to the asymptotic d-cone limit, where the clamp size approaches zero. This paper contributes to the characterization of general confinement of thin sheets, while broadening the understanding of the d cone, a fundamental element of stress focusing, as it appears in realistic settings.

2.
Phys Rev Lett ; 130(14): 148201, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084420

ABSTRACT

A collection of thin structures buckle, bend, and bump into each other when confined. This contact can lead to the formation of patterns: hair will self-organize in curls; DNA strands will layer into cell nuclei; paper, when crumpled, will fold in on itself, forming a maze of interleaved sheets. This pattern formation changes how densely the structures can pack, as well as the mechanical properties of the system. How and when these patterns form, as well as the force required to pack these structures is not currently understood. Here we study the emergence of order in a canonical example of packing in slender structures, i.e., a system of parallel confined elastic beams. Using tabletop experiments, simulations, and standard theory from statistical mechanics, we predict the amount of confinement (growth or compression) of the beams that will guarantee a global system order, which depends only on the initial geometry of the system. Furthermore, we find that the compressive stiffness and stored bending energy of this metamaterial are directly proportional to the number of beams that are geometrically frustrated at any given point. We expect these results to elucidate the mechanisms leading to pattern formation in these kinds of systems and to provide a new mechanical metamaterial, with a tunable resistance to compressive force.

3.
Soft Matter ; 18(43): 8262-8270, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36278291

ABSTRACT

String and grains can be combined to create structures capable of bearing significant loads. In this work, we prepare columns and beams through a layer-by-layer deposition of granular matter and loops of fiber strings, and characterize their mechanical properties. The loops cause the grains to jam, and the inter-grain contact leads to a Hertzian-like constitutive response. Initially, one force chain that propagates vertically through the column bears most of the compressive load. As the magnitude of the load is increased, more force chains form in the column, which act in parallel to increase its stiffness, akin to a "super-Hertzian" regime. Applying a compressive prestress enables the structures to withstand shear, enabling the fabrication of cantilevered beams. This work provides a mechanical framework to use elastogranular jamming to create rapid, reusable infrastructure components, such as columns, beams, and arches from inexpensive, commonplace materials, such as rocks and string.

4.
Soft Matter ; 17(33): 7662-7669, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34351348

ABSTRACT

It is possible to build free-standing, load-bearing structures using only rocks and loops of elastic material. We investigate how these structures emerge, and find that the necessary maximum loop spacing (the critical spacing) is a function of the frictional properties of the grains and the elasticity of the confining material. We derive a model to understand both of these relationships, which depends on a simplification of the behavior of the grains at the edge of a structure. We find that higher friction leads to larger stable grain-grain and grain-loop contact angles resulting in a simple function for the frictional critical spacing, which depends linearly on friction to first order. On the other hand, a higher bending rigidity enables the loops to better contain the hydrostatic pressure of the grains, which we understand using a hydroelastic scale. These findings will illuminate the stabilization of dirt by plant roots, and potentially enable the construction of simple adhesion-less structures using only granular material and fiber.

SELECTION OF CITATIONS
SEARCH DETAIL
...