Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Comp Biochem Physiol C Toxicol Pharmacol ; 283: 109939, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38723702

ABSTRACT

Nanotechnology involves the utilization of nanomaterials, including polymeric nanocapsules (NCs) that are drug carriers. For modify drug release and stability, nanoformulations can feature different types of polymers as surface coatings: Polysorbate 80 (P80), Polyethylene glycol (PEG), Chitosan (CS) and Eudragit (EUD). Although nanoencapsulation aims to reduce side effects, these polymers can interact with living organisms, inducing events in the antioxidant system. Thus far, little has been described about the impacts of chronic exposure, with Drosophila melanogaster being an in vivo model for characterizing the toxicology of these polymers. This study analyzes the effects of chronic exposure to polymeric NCs with different coatings. Flies were exposed to 10, 50, 100, and 500 µL of NCP80, NCPEG, NCCS, or EUD. The survival rate, locomotor changes, oxidative stress markers, cell viability, and Nrf2 expression were evaluated. Between the coatings, NCPEG had minimal effects, as only 500 µL affected the levels of reactive species (RS) and the enzymatic activities of catalase (CAT) and glutathione S-transferase (GST) without reducing Nrf2 expression. However, NCEUD significantly impacted the total flies killed, RS, CAT, and Superoxide dismutase from 100 µL. In part, the toxicity mechanisms of these coatings can be explained by the imbalance of the antioxidant system. This research provided initial evidence on the chronic toxicology of these nanomaterials in D. melanogaster to clarify the nanosafety profile of these polymers in future nanoformulations. Further investigations are essential to characterize possible biochemical pathways involved in the toxicity of these polymeric coatings.

2.
Pharmacol Biochem Behav ; 240: 173774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38648866

ABSTRACT

Memory consolidation is associated with the regulation of protein kinases, which impact synaptic functions and promote synaptogenesis. The administration of spermidine (SPD) has been shown to modulate major protein kinases associated with memory improvement, including the Ca2+-dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA), key players in the cAMP response element-binding protein (CREB) activation. Nevertheless, the initial mechanism underlying SPD-mediated memory consolidation remains unknown, as we hypothesize a potential involvement of the memory consolidation precursor, Ca2+/calmodulin-dependent protein kinase II-α (CaMKIIα), in this process. Based on this, our study aimed to investigate potential interactions among PKC, PKA, and CREB activation, mediated by CaMKIIα activation, in order to elucidate the SPD memory consolidation pathway. Our findings suggest that the post-training administration of the CaMKII inhibitor, KN-62 (0.25 nmol, intrahippocampal), prevented the memory enhancement induced by SPD (0.2 nmol, intrahippocampal) in the inhibitory avoidance task. Through western immunoblotting, we observed that phosphorylation of CaMKIIα in the hippocampus was facilitated 15 min after intrahippocampal SPD administration, resulting in the activation of PKA and CREB, 180 min after infusion, suggesting a possible sequential mechanism, since SPD with KN-62 infusion leads to a downregulation in CaMKIIα/PKA/CREB pathway. However, KN-62 does not alter the memory-facilitating effect of SPD on PKC, possibly demonstrating a parallel cascade in memory acquisition via PKA, without modulating CAMKIIα. These results suggest that memory enhancement induced by SPD administration involves crosstalk between CaMKIIα and PKA/CREB, with no PKC interaction.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cyclic AMP Response Element-Binding Protein , Cyclic AMP-Dependent Protein Kinases , Memory , Rats, Wistar , Signal Transduction , Spermidine , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Rats , Spermidine/pharmacology , Male , Cyclic AMP Response Element-Binding Protein/metabolism , Memory/drug effects , Signal Transduction/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Phosphorylation/drug effects , Sulfonamides/pharmacology , Benzylamines/pharmacology , Benzylamines/administration & dosage , Avoidance Learning/drug effects , Protein Kinase C/metabolism , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
3.
Chem Biol Interact ; 394: 110971, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38521455

ABSTRACT

Selective Androgen Receptor Modulators (SARMs), particularly (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic-acid-methyl-ester (YK11), are increasingly popular among athletes seeking enhanced performance. Serving as an Androgen Receptor (AR) agonist, YK11 stimulates muscle growth while inhibiting myostatin. Our study delved into the impact of YK11 on the rat hippocampus, analyzing potential alterations in neurochemical mechanisms and investigating its synergistic effects with exercise (EXE), based on the strong relationship between SARM users and regular exercise. Utilizing Physiologically Based Pharmacokinetic (PBPK) modeling, we demonstrated YK11 remarkable brain permeability, with molecular docking analysis revealing YK11 inhibitory effects on 5-alpha-reductase type II (5αR2), suggesting high cell bioavailability. Throughout a 5-week experiment, we divided the animals into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming exercise), and EXE + YK11. Our findings showed that YK11 displayed a high binding affinity with AR in the hippocampus, influencing neurochemical function and modulating aversive memory consolidation, including the downregulation of the BDNF/TrkB/CREB signaling, irrespective of EXE combination. In the hippocampus, YK11 increased pro-inflammatory IL-1ß and IL-6 cytokines, while reducing anti-inflammatory IL-10 levels. However, the EXE + YK11 group counteracted IL-6 effects and elevated IL-10. Analysis of apoptotic proteins revealed heightened p38 MAPK activity in response to YK11-induced inflammation, initiating the apoptotic cascade involving Bax/Bcl-2/cleaved caspase-3. Notably, the EXE + YK11 group mitigated alterations in Bcl-2 and cleaved caspase-3 proteins. In conclusion, our findings suggest that YK11, at anabolic doses, significantly alters hippocampal neurochemistry, leading to impairments in memory consolidation. This underscore concerns about the misuse risks of SARMs among athletes and challenges common perceptions of their minimal side effects.


Subject(s)
Hippocampus , Molecular Docking Simulation , Receptors, Androgen , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Receptors, Androgen/metabolism , Male , Rats , Brain-Derived Neurotrophic Factor/metabolism , Apoptosis/drug effects , Rats, Sprague-Dawley , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Physical Conditioning, Animal , Cholestenone 5 alpha-Reductase/metabolism , Receptor, trkB/metabolism
4.
Neurotoxicol Teratol ; 103: 107348, 2024.
Article in English | MEDLINE | ID: mdl-38554851

ABSTRACT

Bisphenol F (BPF) and Bisphenol S (BPS) are being widely used by the industry with the claim of "safer substances", even with the scarcity of toxicological studies. Given the etiological gap of autism spectrum disorder (ASD), the environment may be a causal factor, so we investigated whether exposure to BPF and BPS during the developmental period can induce ASD-like modeling in adult flies. Drosophila melanogaster flies were exposed during development (embryonic and larval period) to concentrations of 0.25, 0.5, and 1 mM of BPF and BPS, separately inserted into the food. When they transformed into pupae were transferred to a standard diet, ensuring that the flies (adult stage) did not have contact with bisphenols. Thus, after hatching, consolidated behavioral tests were carried out for studies with ASD-type models in flies. It was observed that 1 mM BPF and BPS caused hyperactivity (evidenced by open-field test, negative geotaxis, increased aggressiveness and reproduction of repetitive behaviors). The flies belonging to the 1 mM groups of BPF and BPS also showed reduced cognitive capacity, elucidated by the learning behavior through aversive stimulus. Within the population dynamics that flies exposed to 1 mM BPF and 0.5 and 1 mM BPS showed a change in social interaction, remaining more distant from each other. Exposure to 1 mM BPF, 0.5 and 1 mM BPS increased brain size and reduced Shank immunoreactivity of adult flies. These findings complement each other and show that exposure to BPF and BPS during the development period can elucidate a model with endophenotypes similar to ASD in adult flies. Furthermore, when analyzing comparatively, BPS demonstrated a greater potential for damage when compared to BPF. Therefore, in general these data sets contradict the idea that these substances can be used freely.


Subject(s)
Benzhydryl Compounds , Drosophila melanogaster , Endophenotypes , Phenols , Sulfones , Animals , Drosophila melanogaster/drug effects , Phenols/toxicity , Sulfones/toxicity , Benzhydryl Compounds/toxicity , Behavior, Animal/drug effects , Disease Models, Animal , Larva/drug effects , Male , Female , Autism Spectrum Disorder/chemically induced
5.
Article in English | MEDLINE | ID: mdl-38369039

ABSTRACT

Evidence has shown that consuming trans fatty acids (TFA) during development leads to their incorporation into the nervous tissue, resulting in neurological changes in flies. In this study, Drosophila melanogaster was exposed to different concentrations of hydrogenated vegetable fat (HVF) during development: substitute hydrogenated vegetable fat (SHVF), HVF 10 %, and HVF 20 %. The objective was to evaluate the effects of early trans fat exposure on cognition and associated pathways in flies. The results showed that early TFA exposure provoked a cerebral redox imbalance, as confirmed by increased reactive species (HVF 10 and 20 %) and lipid peroxidation (SHVF, HVF 10, and 20 %), reduced nuclear factor erythroid 2-related factor 2 immunoreactivity (HVF 10 and 20 %), and increased heat shock protein 70 (HVF 20 %), which was possibly responsible for decreasing superoxide dismutase (SHVF, HVF 10, and 20 %) and catalase (HVF 20 %) activities. Furthermore, the presence of TFA in nervous tissue impaired learning (HVF 10 and 20 %) and memory at 6 and 24 h (SHVF, HVF 10, and 20 %). These cognitive impairments may be linked to reduced Shank levels (HVF 20 %) and increased acetylcholinesterase activity (SHVF, HVF 10 and 20 %) observed. Our findings demonstrate that early exposure to trans fat leads to cerebral redox imbalance, altering proteins associated with stress, synaptic plasticity, and the cholinergic system, consequently leading to cognitive impairment in flies.


Subject(s)
Cognitive Dysfunction , Trans Fatty Acids , Animals , Drosophila melanogaster , Trans Fatty Acids/toxicity , Acetylcholinesterase , Oxidative Stress , Cognitive Dysfunction/chemically induced , Neuronal Plasticity
6.
Behav Brain Res ; 459: 114753, 2024 02 29.
Article in English | MEDLINE | ID: mdl-37949320

ABSTRACT

The behavior and neuronal ganglia integrity of Drosophila melanogaster larvae exposed to Bisphenol F (BPF) and Bisphenol S (BPS) (0.25, 0.5 and 1 mM) was evaluated. Larvae exposed to BPF and BPS (0.5 and 1 mM) showed hyperactivity, reduced decision-making capacity and were not responsive to touch (no sensitivity to physical stimuli). There was also a reduction in the tunneling capacity induced by 1 mM of BPF and BPS (innate behaviors for survival). Behaviors resulting from changes in neuronal functioning, thermotaxis and phototaxis showed that BPS was more harmful compared to BPF. Furthermore, the concentration of 1 mM BPS generated greater damage to neuronal ganglia when compared to BPF. This difference may be related to the LC50 of the 10.04 mM BPS and 15.07 mM BPF. However, these behavioral changes presented by the larvae here are characteristic of those presented in neurodevelopmental disorders. Our findings are novel and refute the possibility that BPF and BPS are safer alternatives.


Subject(s)
Drosophila melanogaster , Phenols , Animals , Larva , Phenols/pharmacology , Benzhydryl Compounds/toxicity
7.
Food Chem Toxicol ; 181: 114109, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37858841

ABSTRACT

We investigated a possible toxic effect induced by chronic exposure to free curcumin and curcumin-loaded nanocapsules in Drosophila melanogaster, enabling safe applications. Flies of both sexes were divided into groups: control group; free curcumin at concentrations of 10, 30, 100, 300, 900, and 3000 µM; curcumin-loaded nanocapsules at concentrations of 10, 30, 100, and 300 µM. Initially, the diet consumption test was evaluated in flies exposed to different concentrations. During the 10-day treatment, the flies were evaluated for percentage survival. After the treatment, behaviors (geotaxis negative and open field), acetylcholinesterase activity (AChE), and oxidative stress parameters (reactive species (RS) and thiobarbituric acid reactive substances (TBARS) levels, Glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) enzymes activity, erythroid-derived nuclear factor 2 (Nrf2) immunoreactivity, and cellular metabolic capacity, were assessed. No significant difference in diet consumption, indicating that the flies equally consumed the different concentrations of free curcumin and the curcumin-loaded nanocapsules. Was observed that free curcumin and curcumin-loaded nanocapsules increased survival, locomotor and exploratory performance, decreased AChE activity, RS and TBARS levels, increased GST, SOD and CAT activity, Nrf2 and viable cells compared to the control. The chronic treatment did not cause toxicity, suggesting that nanoencapsulation of curcumin could be explored.


Subject(s)
Curcumin , Nanocapsules , Animals , Male , Female , Drosophila melanogaster , Curcumin/toxicity , Nanocapsules/toxicity , Acetylcholinesterase/metabolism , NF-E2-Related Factor 2/metabolism , Thiobarbituric Acid Reactive Substances , Oxidative Stress , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Catalase/metabolism
8.
J Comp Physiol B ; 193(5): 479-493, 2023 10.
Article in English | MEDLINE | ID: mdl-37500966

ABSTRACT

This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.


Subject(s)
Drosophila melanogaster , p38 Mitogen-Activated Protein Kinases , Animals , p38 Mitogen-Activated Protein Kinases/metabolism , Drosophila melanogaster/metabolism , Proto-Oncogene Proteins c-akt/metabolism , NF-E2-Related Factor 2/metabolism , Citrate (si)-Synthase/metabolism , Oxidation-Reduction , Glutathione/metabolism , Lactate Dehydrogenases/metabolism , Lactates
9.
J Steroid Biochem Mol Biol ; 233: 106364, 2023 10.
Article in English | MEDLINE | ID: mdl-37468001

ABSTRACT

Our study investigates potential neurochemical effects of (17α,20E)- 17,20-[(1-methoxyethylidene)bis(oxy)]- 3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), a selective androgen receptor modulator (SARM), in the rat hippocampus, with a particular focus on oxidative stress and mitochondrial function, as well as its potential effect when combined with exercise (EXE). To validate YK11's anabolic potential, we performed a molecular docking analysis with the androgen receptor (AR), which showed high affinity with YK11, highlighting hydrogen interactions in Arg752. During the five-week protocol, we divided male Wistar rats into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming protocol), and EXE+YK11. The administration of YK11 resulted in alterations in the endogenous antioxidant system, promoting increased oxidative stress and proteotoxic effects, impairing all mitochondrial function markers in the hippocampus. In contrast, EXE alone had a neuroprotective effect, increasing antioxidant defenses and improving mitochondrial metabolism. When combined, EXE+YK11 prevented alterations in some mitochondrial toxicity markers, including MnSOD/SOD2 and MTT reduction capacity, but did not reverse YK11's neurochemical impairments regarding increased oxidative stress and dysfunction of the mitochondrial respiratory chain and mitochondrial dynamics regulatory proteins in the hippocampus. In summary, our study identifies important pathways of YK11's hippocampal effects, revealing its potential to promote oxidative stress and mitochondrial dysfunction, suggesting that the administration of YK11 may pose potential neurological risks for athletes and bodybuilders seeking to enhance performance. These findings highlight the need for further research to assess the safety and efficacy of YK11 and SARM use in humans.


Subject(s)
Androgens , Receptors, Androgen , Animals , Humans , Male , Rats , Androgen Antagonists/pharmacology , Androgens/metabolism , Hippocampus/metabolism , Mitochondria/metabolism , Molecular Docking Simulation , Oxidative Stress , Rats, Wistar , Receptors, Androgen/metabolism
10.
Article in English | MEDLINE | ID: mdl-36940893

ABSTRACT

ß-carotene-loaded nanoparticles improves absorption by increasing bioavailability. The Drosophila melanogaster model of Parkinson's disease must be helpful in investigating potential neuroprotective effects. Four groups of four-day-old flies were exposed to: (1) control; (2) diet containing rotenone (500 µM); (3) ß-carotene-loaded nanoparticles (20 µM); (4) ß-carotene-loaded nanoparticles and rotenone for 7 days. Then, the percentage of survival, geotaxis tests, open field, aversive phototaxis and food consumption were evaluated. At the end of the behaviors, the analyses of the levels of reactive species (ROS), thiobarbituric acid reactive substances (TBARS), catalase (CAT) and superoxide dismutase (SOD) activity was carried out, as well as an evaluation of the levels of dopamine and acetylcholinesterase (AChE) activity, in the head of flies. Nanoparticles loaded with ß-carotene were able to improve motor function, memory, survival and also restored the oxidative stress indicators (CAT, SOD, ROS and TBARS), dopamine levels, AChE activity after exposure to rotenone. Overall, nanoparticles loaded with ß-carotene showed significant neuroprotective effect against damage induced by the Parkinson-like disease model, emerging as a possible treatment. Overall, ß-carotene-loaded nanoparticles presented significant neuroprotective effect against damage induced by model of Parkinson-like disease, emerging as a possible treatment.


Subject(s)
Nanoparticles , Neuroprotective Agents , Parkinson Disease , Animals , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Drosophila melanogaster , beta Carotene/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Dopamine , Rotenone , Reactive Oxygen Species , Neuroprotective Agents/pharmacology , Thiobarbituric Acid Reactive Substances , Acetylcholinesterase/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Disease Models, Animal
11.
Food Chem Toxicol ; 175: 113701, 2023 May.
Article in English | MEDLINE | ID: mdl-36863561

ABSTRACT

Bisphenol F (BPF) and Bisphenol S (BPS) are safe alternatives substances? Here Drosophila melanogaster were exposed during development (larval stage) to BPF and BPS (0.25, 0.5 and 1 mM). Upon reaching the last larval stage (3rd stage), markers of oxidative stress and metabolism of both substances were evaluated, along with investigation of mitochondrial and cell viability. This study is attributed to an unprecedented fact: BPF and BPS exposed larvae, both at concentrations of 0.5 and 1 mM, showed higher cytochrome P-450 (CYP450) activity. The GST activity increased in all BPF and BPS concentrations, and reactive species, lipid peroxidation, superoxide dismutase, and catalase activity increased in larvae (BPF and BPS; 0.5, and 1 mM); nonetheless, mitochondrial and cell viability decreased with 1 mM of BPF and BPS. In addition, the reduced number of pupae formed in the 1 mM BPF and BPS groups and melanotic mass formation may be attributed to oxidative stress. From the pupae formed, the hatching rate reduced in the 0.5 and 1 mM BPF and BPS groups. Thus, the possible presence of toxic metabolites may be related to the larval oxidative stress condition, which is detrimental to the complete development of Drosophila melanogaster.


Subject(s)
Drosophila melanogaster , Oxidative Stress , Animals , Phenols/toxicity , Benzhydryl Compounds/toxicity
12.
Neuroscience ; 519: 10-22, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36933760

ABSTRACT

Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.


Subject(s)
Drosophila melanogaster , Trans Fatty Acids , Rats , Animals , Rats, Wistar , Fatty Acids , Depression
13.
Neurotoxicology ; 94: 223-234, 2023 01.
Article in English | MEDLINE | ID: mdl-36528186

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction and repetitive behaviors. In this study, we assessed the effect of lutein-loaded nanoparticles on ASD-like behaviors induced by prenatal valproic acid (VPA) exposure in female offspring rats and the possible involvement of oxidative stress and apoptosis. Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg), on the gestational day 12.5. The VPA-exposed female offspring rats were divided into two subgroups and received either lutein-loaded nanoparticles (5 mg/kg) or saline by oral gavage, for 14 days. The animals were submitted to the three-chamber test and open field to evaluate ASD-like behaviors. The hippocampus was removed for the determination of oxidative stress indicators (ROS; TBARS; SOD and Nrf2) and apoptosis biomarkers (Hsp-70; p38-MAPK; Bax and Bcl-2). The exposure to lutein-loaded nanoparticles reversed sociability deficit, social memory deficit, and anxiety-like and repetitive behaviors induced by VPA, and restored the oxidative stress indicators and apoptosis biomarkers in the hippocampus. This neurochemical effect must be associated with the reversal of ASD-like behaviors. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for VPA-induced behavioral damage in female rats and suggest the involvement of oxidative stress.


Subject(s)
Autism Spectrum Disorder , Nanoparticles , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Female , Animals , Valproic Acid/adverse effects , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Lutein/adverse effects , Rats, Wistar , Social Behavior , Prenatal Exposure Delayed Effects/chemically induced , Oxidative Stress , Nanoparticles/toxicity , Apoptosis , Biomarkers
14.
Article in English | MEDLINE | ID: mdl-35318128

ABSTRACT

Female and male Drosophila melanogaster were exposed separately for seven days to Bisphenol A (BPA), Bisphenol F (BPF), and Bisphenol S (BPS) at concentrations of 0.25, 0.5, and 1 mM. We observed that males exposed to 0.5 and 1 mM BPS showed lower catalase (CAT) activity and higher superoxide dismutase (SOD) and reactive species (RS); CAT activity decreased for BPF 0.5 and 1 mM. Nevertheless, BPA 0.5 and 1 mM decreased CAT activity, increased RS and lipid peroxidation (LPO), and reduced mitochondrial viability. None of the bisphenols altered the cell viability of male flies, although BPA 0.5 and 1 mM reduced longevity. In female flies, BPA and BPS 0.5 and 1 mM increased RS and LPO levels and decreased CAT activity and glutathione-S-transferase (GST), which may have contributed to lower mitochondrial and cell viability. Furthermore, BPS decreased SOD activity at the 1 mM concentration, and BPA reduced the SOD activity at concentrations of 0.5 and 1 mM. In the BPF 1 mM group, there was a reduction in GST activity and an increase in RS and LPO levels. The toxicological effects were different between sexes, and BPA was more harmful than BPF and BPS in male flies. Thus, our findings showed that females were more susceptible to oxidative cell damage when exposed to BPA and BPS than to BPF, and daily exposure to BPA and BPS at all concentrations reduced female longevity, as well as in BPF 1 mM.


Subject(s)
Drosophila melanogaster , Longevity , Animals , Antioxidants , Benzhydryl Compounds/toxicity , Drosophila melanogaster/metabolism , Female , Glutathione Transferase , Male , Oxidative Stress , Phenols , Superoxide Dismutase/metabolism
15.
Free Radic Res ; 56(9-10): 577-594, 2022.
Article in English | MEDLINE | ID: mdl-36641780

ABSTRACT

Drug repurposing allows searching for new biological targets, especially against emerging diseases such as Covid-19. Drug colchicine (COL) presents recognized anti-inflammatory action, while the nanotechnology purpose therapies with low doses, efficacy, and decrease the drug's side-effects. This study aims to evaluate the effects of COL and colchicine nanocapsules (NCCOL) on survival, LC50, activity locomotor, and oxidative stress parameters, elucidating the toxicity profile in acute and chronic exposure in Drosophila melanogaster. Three-day-old flies were investigated into groups: Control, 0.001, 0.0025, 0.005, and 0.010 mg/mL of COL or NCCOL. The survival rate, open field test, LC50, oxidative stress markers (reactive species (RS) production, thiobarbituric acid reactive substances), antioxidant enzyme activity (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase), protein thiols, nonprotein thiols, acetylcholinesterase activity, and cell viability were measured. As a result, acute exposure to the COL decreases the number of crosses in the open field and increases CAT activity. NCCOL reduced RS levels, increased lipoperoxidation and SOD activity. Chronic exposure to the COL and NCCOL in high concentrations implied high mortality and enzymatic inhibition of the CAT and AChE, and only the COL caused locomotor damage in the open field test. Thus, NCCOL again reduced the formation of RS while COL increased. In this comparative study, NCCOL was less toxic to the antioxidant system than COL and showed notable involvement of oxidative stress as one of their toxicity mechanisms. Future studies are needed to elucidate all aspects of nanosafety related to the NCCOL.


Subject(s)
COVID-19 , Drosophila melanogaster , Animals , Drosophila melanogaster/metabolism , Antioxidants/metabolism , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Oxidative Stress , Catalase/metabolism , Superoxide Dismutase/metabolism , Sulfhydryl Compounds/metabolism
16.
Rev. ADM ; 78(6): 346-349, nov.-dic. 2021. ilus, tab, graf
Article in Spanish | LILACS | ID: biblio-1354800

ABSTRACT

Introducción: A pesar de que actualmente la radiografía panorámica es un instrumento auxiliar de diagnóstico de uso común, desafortunadamente sus beneficios no se aprovechan en su totalidad y su empleo se limita al uso en determinadas áreas de la odontología y en ocasiones se omiten hallazgos que pueden tener un significado clínico importante. Material y métodos: Estudio transversal y descriptivo de una muestra aleatoria de 500 estudios de imagen (radiografías panorámicas) durante el periodo de enero a mayo de 2018 analizadas por expertos estandarizados y empleando estadística descriptiva básica mediante el paquete estadístico Excel. Resultados: Se incluyeron 500 estudios, 67% correspondió a mujeres en un rango de cinco a 91 años de edad con una mediana de 43 años, 48% presentó alteraciones siendo las más frecuentas pérdida del proceso alveolar 45%, alteraciones en articulación temporomandibular 34%, y calcificación del ligamento estilohioideo 31%. Conclusión: Se reportaron hallazgos clínico-radiográficos significativos, resaltando la necesidad de un análisis cuidadoso de los métodos auxiliares de diagnóstico que permitan visualizar de manera contextual el tratamiento odontológico de los pacientes y/o reportar al especialista correspondiente otro tipo de hallazgos (AU))


Introduction: Although panoramic radiography is currently a commonly used diagnostic auxiliary instrument, unfortunately its benefits are not fully exploited and its use is limited to use in certain areas of Dentistry and eventually findings that may have important clinical significance are omitted. Material and methods: Crosssectional and descriptive study of a random sample of 500 imaging studies (panoramic radiographs) during the period from January to May 2018, analyzed by standardized experts and using basic descriptive statistics using the Excel statistical package. Results: 500 studies were included corresponding to 67% women and an age range from five to 91 years of age with a median of 43 years, 48% presented alterations, the most frequent being loss of the alveolar process 45%, alterations in the temporomandibular joint 34%, and calcification of the hyoid ligament 31%. Conclusion: In this study significant clinical-radiographic findings are reported, highlighting the need for a careful analysis of auxiliary diagnostic methods that allow visualize the dental treatment of the patients and / or report other findings to the corresponding specialist (AU)


Subject(s)
Humans , Male , Female , Child , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Social Security , Radiography, Panoramic , Jaw Diseases/diagnostic imaging , Epidemiology, Descriptive , Cross-Sectional Studies , Retrospective Studies , Mouth Diseases/diagnostic imaging
17.
Food Chem Toxicol ; 157: 112526, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34461193

ABSTRACT

Environmental factors are involved in the pathogenesis of neurodevelopmental disorders in addition to genetic factors. In this sense, we demonstrated here that the embryonic exposure of Drosophila melanogaster to Bisphenol A (BPA) 1 mM resulted in changes in development, behavior, and biochemical markers punctuated below. BPA did not alter the oviposition and viability of the eggs, however, it was evidenced a decrease in the rate of pupal eclosion and life span of the hatched flies of the generation filial 1 (F1). F1 flies also developed behavioral changes such as incompatibility in the social interaction between them, and hyperactivity demonstrated by increased locomotion in open field tests, increased grooming, and aggression episodes. Furthermore, decreases in dopamine levels and tyrosine hydroxylase activity have also been observed in flies' heads, possibly related to oxidative damage. Through analyzes of oxidative stress biomarkers, carried out on samples of flies' heads, we observed an increase in malondialdehyde and reactive species, decrease in the activity of the superoxide dismutase and catalase, which possibly culminated in the reduction of cell viability. Thus, it is important to emphasize that BPA developed atypical behaviors in Drosophila melanogaster, reinforce the importance of the environmental factor in the development of neurobehavioral diseases.


Subject(s)
Behavior, Animal/drug effects , Benzhydryl Compounds/toxicity , Dopamine/metabolism , Drosophila melanogaster/drug effects , Phenols/toxicity , Animals , Catalase/metabolism , Dopamine/physiology , Drosophila melanogaster/embryology , Drosophila melanogaster/growth & development , Female , Fertility/drug effects , Glutathione Transferase/metabolism , Male , Open Field Test/drug effects , Oxidative Stress/drug effects , Pupa/drug effects , Superoxide Dismutase/metabolism , Tyrosine/metabolism , Tyrosine 3-Monooxygenase/drug effects , Tyrosine 3-Monooxygenase/metabolism
18.
Neurotoxicology ; 85: 79-89, 2021 07.
Article in English | MEDLINE | ID: mdl-34000340

ABSTRACT

Neurodevelopmental disorders, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD) are responsible for behavioral deficits in children. Imidacloprid is a nicotinic acetylcholine receptor agonist, capable of causing behavioral changes in Drosophila melanogaster, similar to the ADHD-like phenotypes. We assess whether behavioral damage induced by imidacloprid exposure in Drosophila melanogaster is associated with neurochemical changes and whether these changes are similar to those observed in neurodevelopmental disorders such as ASD and ADHD. The fruit flies were divided into four groups, exposed to either a standard diet (control) or a diet containing imidacloprid (200, 400 or 600 ρM) and allowed to mate for 7 days. After hatching, the progeny was subjected to in vivo and ex vivo tests. The ones exposed to imidacloprid showed an increase in hyperactivity, aggressiveness, anxiety and repetitive movements, as well as, a decrease in social interaction. Furthermore, exposure to imidacloprid decreased dopamine levels, cell viability and increased oxidative stress in the flies' progeny. These results demonstrated that the behavioral damage induced by imidacloprid exposure involves a reduction in dopamine levels and oxidative stress and that these neurochemical changes are in line with the events that occur in ASD and ADHD-like phenotypes in other models.


Subject(s)
Dopamine/metabolism , Insecticides/toxicity , Neonicotinoids/toxicity , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/metabolism , Nitro Compounds/toxicity , Oxidative Stress/drug effects , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drosophila melanogaster , Female , Male , Oxidative Stress/physiology , Social Interaction/drug effects
19.
Chem Biol Interact ; 340: 109431, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33716020

ABSTRACT

Parkinson's is a neurodegenerative disease, characterized by the loss of dopaminergic neurons, cholinergic alterations and oxidative damages. Lutein is widely known by its antioxidants properties. In the present study, we investigated whether lutein-loaded nanoparticles protects against locomotor damage and neurotoxicity induced by Parkinson's disease model in Drosophila melanogaster, as well as possible mechanisms of action. First, the nanoparticles were characterized by physicochemical methods, demonstrating that water affinity was improved by the encapsulation of lutein into the polymeric encapsulant matrix. The fruit flies of 1-4 days old were divided into four groups and exposed to a standard diet (control), a diet containing either rotenone (500 µM), lutein-loaded nanoparticles (6 µM) or rotenone (500 µM) and lutein-loaded nanoparticles (6 µM) for 7 days. The survival percentage was assessed, the flies were submitted to negative geotaxis, open field tasks and the determination of dopamine levels, tyrosine hydroxylase (TH) and acetylcholinesterase activities and oxidative stress indicators (superoxide dismutase, catalase, thiobarbituric acid reactive substances and glutathione S-transferase) were carried out. The exposure to lutein-loaded nanoparticles protected against locomotor damage and the decrease survival rate induced by rotenone, besides, it restored the dopamine levels, TH and acetylcholinesterase activities and oxidative stress indicators. These results provide evidence that lutein-loaded nanoparticles are an alternative treatment for rotenone-induced damage, and suggest the involvement of dopaminergic and cholinergic system and oxidative stress.


Subject(s)
Cholinergic Neurons/drug effects , Dopaminergic Neurons/drug effects , Drosophila melanogaster/drug effects , Lutein/pharmacology , Nanoparticles/chemistry , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Acetylcholinesterase/metabolism , Animals , Cholinergic Neurons/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Drosophila melanogaster/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/metabolism , Parkinson Disease/metabolism
20.
Dev Biol ; 475: 80-90, 2021 07.
Article in English | MEDLINE | ID: mdl-33741348

ABSTRACT

Iron (Fe) is used in various cellular functions, and a constant balance between its uptake, transport, storage, and use is necessary to maintain its homeostasis in the body. Changes in Fe metabolism with a consequent overload of this metal are related to neurological changes and cover a broad spectrum of diseases, mainly when these changes occur during the embryonic period. This work aimed to evaluate the effect of exposure to Fe overload during the embryonic period of Drosophila melanogaster. Progenitor flies (male and female) were exposed to ferrous sulfate (FeSO4) for ten days in concentrations of 0.5, 1, and 5 â€‹mM. After mating and oviposition, the progenitors were removed and the treatment bottles preserved, and the number of daily hatches and cumulative hatching of the first filial generation (F1) were counted. Subsequently, F1 flies (separated by sex) were subjected to behavioral tests such as negative geotaxis test, open field test, grooming, and aggression test. They have evaluated the levels of dopamine (DA), serotonin (5-HT), octopamine (OA), tryptophan and tyrosine hydroxylase (TH), acetylcholinesterase, reactive species, and the levels of Fe in the progenitor flies and F1. The Fe levels of F1 flies are directly proportional to what is incorporated during the period of embryonic development; we also observed a delay in hatching and a reduction in the number of the hatch of F1 flies exposed during the embryonic period to the 5mM Fe diet, a fact that may be related to the reduction of the cell viability of the ovarian tissue of progenitor flies. The flies exposed to Fe (1 and 5 â€‹mM) showed an increase in locomotor activity (hyperactivity) and a significantly higher number of repetitive movements. In addition to a high number of aggressive encounters when compared to control flies. We can also observe an increase in the levels of biogenic amines DA and 5-HT and an increase in TH activity in flies exposed to Fe (1 and 5 â€‹mM) compared to the control group. We conclude that the hyperactive-like behavior demonstrated in both sexes by F1 flies exposed to Fe may be associated with a dysregulation in the levels of DA and 5-HT since Fe is a cofactor of TH, which had its activity increased in this study. Therefore, more attention is needed during the embryonic development period for exposure to Fe overload.


Subject(s)
Drosophila melanogaster/embryology , Hyperkinesis/physiopathology , Iron Overload/embryology , Animals , Behavior, Animal/physiology , Biogenic Amines/metabolism , Biogenic Amines/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Hyperkinesis/etiology , Iron/metabolism , Iron/physiology , Iron/toxicity , Iron Overload/metabolism , Iron Overload/physiopathology , Locomotion/drug effects , Male , Maternal Exposure , Motor Activity/drug effects , Oxidation-Reduction , Paternal Exposure
SELECTION OF CITATIONS
SEARCH DETAIL
...