Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 181(16): 2905-2922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679932

ABSTRACT

BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.


Subject(s)
Adenosine Triphosphate , Catecholamines , Chromaffin Cells , Exocytosis , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X7/metabolism , Chromaffin Cells/metabolism , Chromaffin Cells/drug effects , Cattle , Adenosine Triphosphate/metabolism , Mice , Catecholamines/metabolism , Exocytosis/drug effects , PC12 Cells , Rats , Calcium/metabolism , Autocrine Communication , Mice, Inbred C57BL , Cells, Cultured , Male
2.
Neuropathol Appl Neurobiol ; 49(4): e12918, 2023 08.
Article in English | MEDLINE | ID: mdl-37317811

ABSTRACT

AIMS: Dynamin-2 is a large GTPase, a member of the dynamin superfamily that regulates membrane remodelling and cytoskeleton dynamics. Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM), a congenital neuromuscular disorder characterised by progressive weakness and atrophy of the skeletal muscles. Cognitive defects have been reported in some DNM2-linked CNM patients suggesting that these mutations can also affect the central nervous system (CNS). Here we studied how a dynamin-2 CNM-causing mutation influences the CNS function. METHODS: Heterozygous mice harbouring the p.R465W mutation in the dynamin-2 gene (HTZ), the most common causing autosomal dominant CNM, were used as disease model. We evaluated dendritic arborisation and spine density in hippocampal cultured neurons, analysed excitatory synaptic transmission by electrophysiological field recordings in hippocampal slices, and evaluated cognitive function by performing behavioural tests. RESULTS: HTZ hippocampal neurons exhibited reduced dendritic arborisation and lower spine density than WT neurons, which was reversed by transfecting an interference RNA against the dynamin-2 mutant allele. Additionally, HTZ mice showed defective hippocampal excitatory synaptic transmission and reduced recognition memory compared to the WT condition. CONCLUSION: Our findings suggest that the dynamin-2 p.R465W mutation perturbs the synaptic and cognitive function in a CNM mouse model and support the idea that this GTPase plays a key role in regulating neuronal morphology and excitatory synaptic transmission in the hippocampus.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Animals , Mice , Disease Models, Animal , Dynamin II/genetics , Dynamin II/metabolism , Muscle, Skeletal/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Neurons/metabolism , Synaptic Transmission
3.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142275

ABSTRACT

Gain-of-function mutations of dynamin-2, a mechano-GTPase that remodels membrane and actin filaments, cause centronuclear myopathy (CNM), a congenital disease that mainly affects skeletal muscle tissue. Among these mutations, the variants p.A618T and p.S619L lead to a gain of function and cause a severe neonatal phenotype. By using total internal reflection fluorescence microscopy (TIRFM) in immortalized human myoblasts expressing the pH-sensitive fluorescent protein (pHluorin) fused to the insulin-responsive aminopeptidase IRAP as a reporter of the GLUT4 vesicle trafficking, we measured single pHluorin signals to investigate how p.A618T and p.S619L mutations influence exocytosis. We show here that both dynamin-2 mutations significantly reduced the number and durations of pHluorin signals induced by 10 µM ionomycin, indicating that in addition to impairing exocytosis, they also affect the fusion pore dynamics. These mutations also disrupt the formation of actin filaments, a process that reportedly favors exocytosis. This altered exocytosis might importantly disturb the plasmalemma expression of functional proteins such as the glucose transporter GLUT4 in skeletal muscle cells, impacting the physiology of the skeletal muscle tissue and contributing to the CNM disease.


Subject(s)
Dynamin II , Myopathies, Structural, Congenital , Dynamin II/genetics , Dynamin II/metabolism , Exocytosis , Gain of Function Mutation , Glucose Transport Proteins, Facilitative/metabolism , Humans , Ionomycin , Muscle, Skeletal/metabolism , Mutation , Myoblasts/metabolism , Myopathies, Structural, Congenital/metabolism
4.
Sci Rep ; 7(1): 4580, 2017 07 04.
Article in English | MEDLINE | ID: mdl-28676641

ABSTRACT

Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.


Subject(s)
Actins/metabolism , Dynamin II/genetics , Genetic Predisposition to Disease , Muscle Cells/metabolism , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Actins/chemistry , Animals , Disease Models, Animal , Dynamin II/metabolism , Enzyme Activation , Gene Expression , Genetic Association Studies , Glucose Transporter Type 4/metabolism , Humans , Mice , Myoblasts/metabolism , Myopathies, Structural, Congenital/pathology , Protein Binding , Protein Multimerization , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...