Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 3296, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332022

ABSTRACT

Emerging areas such as the Internet of Things (IoT), wearable and wireless sensor networks require the implementation of optoelectronic devices that are cost-efficient, high-performing and capable of conforming to different surfaces. Organic semiconductors and their deposition via digital printing techniques have opened up new possibilities for optical devices that are particularly suitable for these innovative fields of application. In this work, we present the fabrication and characterization of high-performance organic photodiodes (OPDs) and their use as an optical receiver in an indoor visible light communication (VLC) system. We investigate and compare different device architectures including spin-coated, partially-printed, and fully-printed OPDs. The presented devices exhibited state-of-the-art performance and reached faster detection speeds than any other OPD previously reported as organic receivers in VLC systems. Finally, our results demonstrate that the high-performance of the fabricated OPDs can be maintained in the VLC system even after the fabrication method is transferred to a fully-inkjet-printed process deposited on a mechanically flexible substrate. A comparison between rigid and flexible samples shows absolute differences of only 0.2 b s-1 Hz-1 and 2.9 Mb s-1 for the spectral efficiency and the data rate, respectively.

2.
Opt Lett ; 48(23): 6180-6183, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039221

ABSTRACT

We present a distributed receiver for visible light communication based on a side-emitting optical fiber. We show that 500 kbps data rate can be captured with a bit-error rate below the forward-error correction limit of 3.8·10-3 with a light-emitting diode (LED) transmitter 25 cm away from the fiber, whereas by increasing the photodetector gain and reducing the data rate down to 50 kbps, we improve the LED-fiber distance significantly up to 4 m. Our results lead to a low-cost distributed visible-light receiver with a 360° field of view for indoor low-data rate, Internet of Things, and sensory networks.

3.
Opt Express ; 30(24): 43910-43924, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36523079

ABSTRACT

Symmetries in system modeling can be exploited to obtain analytical results on the system behavior and to speed up computations using the symmetric model. This work explores the use of symmetries in radiant surfaces for calculating the induced irradiance distributions by developing a general mathematical expression. The obtained model is applied to flat, cylindrical, and spherical sources to obtain explicit expressions. An experimental evaluation of the flat source is carried out and compared with a traditional point source, and the obtained procedure for the flat scenario is compared with the direct integration approach, which shows an improvement in the computation time of at least two orders of magnitude with a relative root mean square error of less than 10%. The results show that the proposed approach enhances short-range predictions for extended sources. To demonstrate the impact of this in optical wireless communications we have outlined a few applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...