Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38316244

ABSTRACT

Diclofenac (DCF) and ibuprofen (IBU) are pharmaceutical compounds frequently detected in aquatic compartments worldwide. Several hazard effects including developmental abnormalities and redox balance impairment have been elucidated in aquatic species, but multiple endocrine evaluations are scarce. Therefore, the present study aimed to assess the disruptive physiological effects and toxicity of DCF and IBU isolated and combined, using females of the native freshwater teleost Astyanax lacustris. In regards to NSAIDs bioavailability, the results showed absence of degradation of IBU and DCF after 7 days of exposure. IBU LC50 for A. lacustris was 137 mgL-1 and females exposed to IBU isolated increased thyroxine (T4) concentration at 24 h and decreased after 96 h; DCF exposure decreased triiodothyronine (T3) concentration at 96 h. Circulating levels of 17ß-estradiol (E2), cortisol (F) and testosterone (T) were not affected by any treatment. HPG and HPI axis genes fshß, pomc and vtg were upregulated after 24 h of IBU exposure, and dio2 was downregulated in DCF fish exposed group after 96 h compared to the mixture. Protein concentration was reduced in muscle and increased in the liver by DCF and mixtures exposures at 24 h; while liver lipids were increased in the mixture groups after 96 h. The study point out the capacity of NSAIDs to affect endocrine endpoints in A. lacustris females and induce changes in energetic substrate content after acute exposure to isolated and mixed NSAIDs treatments. Lastly, the present investigation brings new insights into the toxicity and endocrine disruptive activity of NSAIDs in Latin America teleost species and the aquatic environment.


Subject(s)
Characiformes , Female , Animals , Diclofenac/toxicity , Ibuprofen/toxicity , Anti-Inflammatory Agents, Non-Steroidal , Biological Availability
2.
Environ Pollut ; 323: 121276, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36791946

ABSTRACT

Coastal elasmobranchs are vulnerable to chemicals mostly due to their k-strategic life history characteristics and high trophic positions. Embryos might be particularly exposed through the maternal offloading of contaminants, possibly leading to disruptions during critical developmental phases. Yet, knowledge on biochemical outcomes of prenatal exposure in elasmobranchs is notably limited. Therefore, we aimed to investigate the effects of prenatal exposure to contaminants in embryos of the critically endangered Brazilian guitarfish, Pseudobatos horkelii. Polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals and personal care products, and metals were determined in embryos. Additionally, glutathione S-transferase activity (GST), glutathione (GSH), and metallothionein levels (MT) were analyzed. Finally, lipid peroxidation levels (LPO) and protein carbonyl groups (PCO) were assessed. Embryonic exposure depended on yolk consumption, which was conspicuous in earlier development. We observed a dilution effect of contaminants levels, potentially related to biotransformation of these compounds throughout the embryonic development. Nevertheless, GST was not correlated to contaminant concentrations. The multivariate relationship between antioxidant components (GSH and GST) and LPO and PCO was negative, suggesting the lack of efficient defense of these biomarkers in early development, leading to oxidative damage. In this context, our results indicate that prenatal exposure to contaminants might impact the redox status in embryos of P. horkelii, leading to oxidative damage. Furthermore, metal concentrations influenced MT levels, suggesting this as a potential detoxification pathway in this species.


Subject(s)
Elasmobranchii , Prenatal Exposure Delayed Effects , Skates, Fish , Water Pollutants, Chemical , Animals , Female , Humans , Antioxidants/metabolism , Oxidative Stress , Elasmobranchii/metabolism , Glutathione/metabolism , Metals/pharmacology , Skates, Fish/metabolism , Lipid Peroxidation , Embryonic Development , Water Pollutants, Chemical/analysis , Biomarkers/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...