Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Spine J ; 29(7): 1641-1648, 2020 07.
Article in English | MEDLINE | ID: mdl-32451779

ABSTRACT

PURPOSE: Determine whether decorin is immuno-stimulatory to rat tail IVD cells and to characterize the mechanical consequence of inflammation at the whole rat tail IVD level. METHODS: Cultured rat tail annulus fibrosus (AF) cells were exposed to decorin, a resident IVD small leucine-rich proteoglycan (SLRP), with and without the presence of a toll-like receptor (TLR) 4 inhibitor, TAK-242. Resultant expression of pro-inflammatory cytokine and chemokines (MCP-1; MIP-2; RANTES; IL-6; TNFα) were quantified over 24 h. Whole rat tail IVD cultures (n = 50) were also treated with decorin (two concentrations: 0.5 and 5.0 µg/mL) with and without TAK-242 (via nucleus pulpous injection with a 33-gauge needle), and resultant mechanical properties were measured. RESULTS: AF cells exposed to decorin showed significant increases in pro-inflammatory cytokine and chemokine production; this was significantly blunted with the presence of TAK-242. Whole IVDs injected with decorin showed a dose-dependent decrease in neutral zone and tensile stiffness and an increase in neutral zone size. When TAK-242 was injected into the IVD with the decorin, mechanical stiffness was preserved and not different from sham controls (injected with PBS). CONCLUSION: AF cells are capable of detecting decorin and inducing inflammation. Decorin further resulted in a functional deterioration in IVD mechanical integrity. TAK- 242, a TLR4 inhibitor, blunted chemokine production at the cellular level and preserved mechanical stiffness in the whole IVD.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Decorin , Inflammation , Rats , Tail
2.
Viruses ; 11(2)2019 01 23.
Article in English | MEDLINE | ID: mdl-30678064

ABSTRACT

Frog virus 3 (FV3) is the type species of the genus Ranavirus (family Iridoviridae). FV3 and FV3-like viruses are globally distributed infectious agents with the capacity to replicate in three vertebrate classes (teleosts, amphibians, and reptiles). At the cellular level, FV3 and FV3-like viruses can infect cells from virtually all vertebrate classes. To date, the cellular receptors that are involved in the FV3 entry process are unknown. Class A scavenger receptors (SR-As) are a family of evolutionarily conserved cell-surface receptors that bind a wide range of chemically distinct polyanionic ligands and can function as cellular receptors for other DNA viruses, including vaccinia virus and herpes simplex virus. The present study aimed to determine whether SR-As are involved in FV3 cellular entry. By using well-defined SR-A competitive and non-competitive ligand-blocking assays and absolute qPCR, we demonstrated that the SR-A competitive ligands drastically reduced the quantities of cell-associated viral loads in frog cells. Moreover, inducing the expression of a human SR-AI in an SR-A null cell line significantly increased FV3⁻cell association. Together, our results indicate that SR-As are utilized by FV3 during the cellular entry process.


Subject(s)
Amphibians/virology , Ranavirus/physiology , Scavenger Receptors, Class A/metabolism , Virus Internalization , Animals , Cell Line , Larva/virology , Macrophages/virology , Scavenger Receptors, Class A/genetics
3.
Fish Shellfish Immunol ; 74: 260-267, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29325709

ABSTRACT

Senegalese sole Solea senegalensis is currently farmed in recirculation aquaculture systems that often involve water re-oxygenation, which in turn may cause acute or prolonged hyperoxia exposures. In order to understand the impact of acute hyperoxia on the fish immune system and peripheral tissues such as gills and gut, Senegalese sole juveniles (30.05 ±â€¯1.72 g) were exposed to normoxia (100% O2sat) as control and two hyperoxic conditions (150 and 200% O2sat) and sampled at 4 and 24 h. Fish haematological profile, total and differential blood cell counts and plasma immune parameters were analysed. Histomorphology and immunofluorescence analyses of gills and intestine were performed, respectively, whereas head-kidney samples were used for assessing the expression of immune-related genes. Results indicate that acute hyperoxia exposure may reduce fish erythrocyte and haemoglobin levels. Moreover, decreases in total leucocytes numbers, circulating lymphocytes, monocytes, alternative complement pathway activity and expression of cyclooxygenase-2 were observed in fish exposed to hyperoxia. In contrast, hyperoxia did not induce major effects on gill histomorphology nor in the protein content of ion and glucose cotransporters as well as a macrophage marker (V-ATPase) in the intestine. Although the activation of humoral mechanisms and immune-related genes were not dramatically affected by acute hyperoxia, the compromised immune cell status and the reduction of some inflammatory indicators are issues to consider under acute hyperoxia conditions.


Subject(s)
Flatfishes/immunology , Immunity, Innate , Oxygen/analysis , Aerobiosis , Animals , Gills/physiology , Intestines/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...