Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Microbiol ; 125(3-4): 232-43, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17614218

ABSTRACT

Nitric oxide (NO) is a free radical gas with important roles in the host's immune response against viral infections. In this study, we examined the kinetics and distribution of nitric oxide synthase (NOS) expression during the early steps of infection of the porcine nervous system by the alphaherpesvirus pseudorabies virus (PRV). To this end, we examined changes in the expression of the three major NOS isoforms, neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS), by immunohistochemistry in the trigeminal ganglia and brain of pigs inoculated intranasally with a virulent PRV strain. The results obtained show that infection of the porcine nervous system by PRV induced a rapid and progressive increment in NOS expression that coincided in timing, location, and magnitude with those of virus propagation in the nervous tissue. A major finding of this study was that PRV caused not only nNOS and iNOS induction in a variety of cell types, but also eNOS up-regulation in endothelial cells and neurons; therefore, all possible sources of NO are activated and probably contribute to the overproduction of NO during infection with the neurotropic alphaherpesvirus PRV in its natural host.


Subject(s)
Herpesvirus 1, Suid/physiology , Nervous System Diseases/veterinary , Nitric Oxide Synthase/biosynthesis , Pseudorabies/enzymology , Swine Diseases/enzymology , Swine Diseases/virology , Animals , Brain Stem/enzymology , Immunohistochemistry/veterinary , Isoenzymes , Nervous System Diseases/enzymology , Nervous System Diseases/virology , Nitric Oxide Synthase/genetics , Olfactory Bulb/enzymology , Pseudorabies/virology , Trigeminal Ganglion/enzymology , Up-Regulation
2.
J Virol ; 77(10): 5657-67, 2003 May.
Article in English | MEDLINE | ID: mdl-12719558

ABSTRACT

Different tissue culture cell lines infected with a number of alphaherpesviruses produce, in addition to virions, light particles (L particles). L particles are composed of the envelope and tegument components of the virion but totally lack the proteins of the capsid and the virus genome; therefore, they are noninfectious. In this electron microscopy report, we show that L particles are produced during primary replication of the alphaherpesvirus pseudorabies virus (PRV) in the nasal mucosa of experimentally infected swine, its natural host. Although PRV infected different types of cells of the respiratory and olfactory mucosae, PRV L particles were found to be produced exclusively by epithelial cells and fibroblasts. We observed that formation of noninfectious particles occurred by budding of condensed tegument at the inner nuclear membrane and at membranes of cytoplasmic vesicles, resulting in intracisternal and intravesicular L particles, respectively. Both forms of capsidless particles were clearly distinguishable by the presence of prominent surface projections on the envelope and the higher electron density of the tegument, morphological features which were only observed in intravesicular L particles. Moreover, intravesicular but not intracisternal L particles were found to be released by exocytosis and were also identified extracellularly. Comparative analysis between PRV virion and L-particle morphogenesis indicates that both types of virus particles share a common intracellular pathway of assembly and egress but that they show different production patterns during the replication cycle of PRV.


Subject(s)
Herpesvirus 1, Suid/metabolism , Nasal Mucosa/metabolism , Swine Diseases/virology , Viral Envelope Proteins/metabolism , Viral Structural Proteins/metabolism , Virus Replication , Animals , Herpesvirus 1, Suid/pathogenicity , Herpesvirus 1, Suid/ultrastructure , Immunohistochemistry , Microscopy, Electron , Morphogenesis , Nasal Mucosa/ultrastructure , Nasal Mucosa/virology , Pseudorabies/virology , Swine/virology , Viral Envelope Proteins/ultrastructure , Viral Structural Proteins/ultrastructure , Virion/metabolism , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...