Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 149(24): 244110, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30599711

ABSTRACT

We proposed a methodology that allows to maximize the population transfer from a high vibrational state of the a 3Σ+ triplet state to the vibrational ground state of the X 1Σ+ singlet state though the optimization of one pump and one dump laser pulses. The pump pulse is optimized using a fitness function, heuristically improved, that includes the effect of the spin-orbit coupling of the KRb [b-A]-scheme. The dump pulse is optimized to maximize the population transfer to the ground state. We performed a comparison with the case in which the pump and dump pulses are optimized to maximize the population transfer to the ground state employing a genetic algorithm with a single fitness function. The heuristic approach turned out to be 70% more efficient than a quantum optimal control optimization employing a single fitness function. The method proposed provides simple pulses that have an experimental realm.

2.
J Chem Phys ; 143(12): 124108, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26428997

ABSTRACT

We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...