Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31907197

ABSTRACT

Chagas disease, caused by Trypanosoma cruzi, is a major public health issue. Limitations in immune responses to natural T. cruzi infection usually result in parasite persistence with significant complications. A safe, effective, and reliable vaccine would reduce the threat of T. cruzi infections; however, no suitable vaccine is currently available due to a lack of understanding of the requirements for induction of fully protective immunity. We established a T. cruzi strain expressing green fluorescent protein (GFP) under the control of dihydrofolate reductase degradation domain (DDD) with a hemagglutinin (HA) tag, GFP-DDDHA, which was induced by trimethoprim-lactate (TMP-lactate), which results in the death of intracellular parasites. This attenuated strain induces very strong protection against reinfection. Using this GFP-DDDHA strain, we investigated the mechanisms underlying the protective immune response in mice. Immunization with this strain led to a response that included high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), as well as a rapid expansion of effector and memory T cells in the spleen. More CD8+ T cells differentiate to memory cells following GFP-DDDHA infection than after infection with a wild-type (WT) strain. The GFP-DDDHA strain also provides cross-protection against another T. cruzi isolate. IFN-γ is important in mediating the protection, as IFN-γ knockout (KO) mice failed to acquire protection when infected with the GFP-DDDHA strain. Immune cells demonstrated earlier and stronger protective responses in immunized mice after reinfection with T. cruzi than those in naive mice. Adoptive transfers with several types of immune cells or with serum revealed that several branches of the immune system mediated protection. A combination of serum and natural killer cells provided the most effective protection against infection in these transfer experiments.


Subject(s)
Chagas Disease/prevention & control , Protozoan Vaccines/immunology , T-Lymphocyte Subsets/immunology , Trypanosoma cruzi/immunology , Animals , Chagas Disease/immunology , Disease Models, Animal , Immunity, Cellular , Immunologic Factors/metabolism , Interferon-gamma/metabolism , Mice , Protozoan Vaccines/administration & dosage , Tumor Necrosis Factor-alpha/metabolism , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology
2.
Autophagy ; 16(2): 223-238, 2020 02.
Article in English | MEDLINE | ID: mdl-30982401

ABSTRACT

Obesity is associated with changes in the immune system that significantly hinder its ability to mount efficient immune responses. Previous studies have reported a dysregulation of immune responses caused by lipid challenge; however, the mechanisms underlying that dysregulation are still not completely understood. Autophagy is an essential catabolic process through which cellular components are degraded by the lysosomal machinery. In T cells, autophagy is an actively regulated process necessary to sustain homeostasis and activation. Here, we report that CD4+ T cell responses are inhibited when cells are challenged with increasing concentrations of fatty acids. Furthermore, analysis of T cells from diet-induced obese mice confirms that high lipid load inhibits activation-induced responses in T cells. We have found that autophagy is inhibited in CD4+ T cells exposed in vitro or in vivo to lipid stress, which causes decreased autophagosome formation and degradation. Supporting that inhibition of autophagy caused by high lipid load is a key mechanism that accounts for the effects on T cell function of lipid stress, we found that ATG7 (autophagy-related 7)-deficient T cells, unable to activate autophagy, did not show additional inhibitory effects on their responses to activation when subjected to lipid challenge. Our results indicate, thus, that increased lipid load can dysregulate autophagy and cause defective T cell responses, and suggest that inhibition of autophagy may underlie some of the characteristic obesity-associated defects in the T cell compartment.Abbreviations: ACTB: actin, beta; ATG: autophagy-related; CDKN1B: cyclin-dependent kinase inhibitor 1B; HFD: high-fat diet; IFNG: interferon gamma; IL: interleukin; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MAPK8/JNK: mitogen-activated protein kinase 8; LC3-I: non-conjugated form of MAP1LC3B; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3B; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; NFATC2: nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 2; NLRP3: NLR family, pyrin domain containing 3; OA: oleic acid; PI: propidium iodide; ROS: reactive oxygen species; STAT5A: signal transducer and activator of transcription 5A; TCR: T cell receptor; TH1: T helper cell type 1.


Subject(s)
Autophagy/drug effects , Lipids/pharmacology , T-Lymphocytes/immunology , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/ultrastructure , Cell Proliferation/drug effects , Cytokines/metabolism , Diet, High-Fat , Down-Regulation/drug effects , Female , Homeostasis/drug effects , Humans , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Obesity/immunology , Oleic Acid/pharmacology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/drug effects
3.
Immunohorizons ; 3(6): 236-253, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31356169

ABSTRACT

Dendritic cells (DCs) are crucial for the production of adaptive immune responses to disease-causing microbes. However, in the steady state (i.e., in the absence of an infection or when Ags are experimentally delivered without a DC-activating adjuvant), DCs present Ags to T cells in a tolerogenic manner and are important for the establishment of peripheral tolerance. Delivery of islet Ags to DCs using Ag-linked Abs to the DC endocytic receptor CD205 has shown promise in the NOD mouse model of type 1 diabetes (T1D). It is important to note, however, that all myeloid DCs express CD205 in humans, whereas in mice, only one of the classical DC subsets does (classical DC1; CD8α+ in spleen). Thus, the evaluation of CD205-targeted treatments in mice will likely not accurately predict the results observed in humans. To overcome this challenge, we have developed and characterized a novel NOD mouse model in which all myeloid DCs transgenically express human CD205 (hCD205). This NOD.hCD205 strain displays a similar T1D incidence profile to standard NOD mice. The presence of the transgene does not alter DC development, phenotype, or function. Importantly, the DCs are able to process and present Ags delivered via hCD205. Because Ags taken up via hCD205 can be presented on both class I and class II MHC, both CD4+ and CD8+ T cells can be modulated. As both T cell subsets are important for T1D pathogenesis, NOD.hCD205 mice represent a unique, patient-relevant tool for the development and optimization of DC-directed T1D therapies.


Subject(s)
Antigens, CD/metabolism , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Immunotherapy/methods , Lectins, C-Type/metabolism , Minor Histocompatibility Antigens/metabolism , Receptors, Cell Surface/metabolism , Animals , Antigen Presentation , Antigens, CD/genetics , Cells, Cultured , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Immune Tolerance , Lectins, C-Type/genetics , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, Transgenic , Minor Histocompatibility Antigens/genetics , Receptors, Cell Surface/genetics
4.
J Immunol ; 201(2): 583-603, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29858266

ABSTRACT

Cryptococcus neoformans is a fungal pathogen with worldwide distribution. C. neoformans resides within mature phagolysosomes where it often evades killing and replicates. C. neoformans induces phagolysosomal membrane permeabilization (PMP), but the mechanism for this phenomenon and its consequences for macrophage viability are unknown. In this study, we used flow cytometry methodology in combination with cell viability markers and LysoTracker to measure PMP in J774.16 and murine bone marrow-derived macrophages infected with C. neoformans Our results showed that cells manifesting PMP were positive for apoptotic markers, indicating an association between PMP and apoptosis. We investigated the role of phospholipase B1 in C. neoformans induction of PMP. Macrophages infected with a C. neoformans Δplb1 mutant had reduced PMP compared with those infected with wild-type and phospholipase B1-complemented strains, suggesting a mechanism of action for this virulence factor. Capsular enlargement inside macrophages was identified as an additional likely mechanism for phagolysosomal membrane damage. Macrophages undergoing apoptosis did not maintain an acidic phagolysosomal pH. Induction of PMP with ciprofloxacin enhanced macrophages to trigger lytic exocytosis whereas nonlytic exocytosis was common in those without PMP. Our results suggest that modulation of PMP is a critical event in determining the outcome of C. neoformans-macrophage interaction.


Subject(s)
Cell Membrane Permeability , Cryptococcosis/immunology , Cryptococcus neoformans/physiology , Intracellular Membranes/physiology , Lysophospholipase/metabolism , Macrophages/immunology , Phagosomes/physiology , Animals , Apoptosis , Cell Line , Ciprofloxacin/pharmacology , Cryptococcus neoformans/pathogenicity , Exocytosis/drug effects , Female , Host-Pathogen Interactions , Immune Evasion , Lysophospholipase/genetics , Mice , Mice, Inbred C57BL , Mutation/genetics , Phagocytosis , Virulence
5.
J Gerontol A Biol Sci Med Sci ; 72(9): 1201-1206, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28486590

ABSTRACT

As with many other tissues and organs, the immune system is also affected by age. Immunosenescence is characterized by a decreased ability of immune cells to mount a productive response upon exposure to new antigens. Several studies have reported that members of families with exceptional longevity show improved immune function, which might contribute to the increased life- and health-span observed in those families. Autophagy is a catabolic process that delivers cytoplasmic material to the lysosomes for degradation. Defective autophagy is known to be associated with age in several cell types and tissues and its dysregulation is related to age-associated diseases. In T-cells, autophagy has an essential role in modulating protein and organelle homeostasis and in the regulation of activation-induced responses. In this study, using two different cohorts of individuals belonging to families with exceptional longevity, we show that CD4+ T-cells isolated from the offspring of parents with exceptional longevity show improved activation-induced autophagic activity compared with age-matched controls. Interestingly, increased autophagy is positively correlated with increased interferon-γ production. In conclusion, autophagy appears to be better maintained in members of families with extended longevity and positively correlates with improved T-cell function.


Subject(s)
Autophagy/immunology , CD4-Positive T-Lymphocytes/immunology , Longevity/immunology , Lymphocyte Activation/immunology , Aged , Aged, 80 and over , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Homeostasis , Humans , Male , Phenotype
6.
Eur J Immunol ; 46(6): 1326-34, 2016 06.
Article in English | MEDLINE | ID: mdl-27151577

ABSTRACT

In the past 10 years, autophagy has emerged as a crucial regulator of T-cell homeostasis, activation, and differentiation. Through the ability to adjust the cell's proteome in response to different stimuli, different forms of autophagy have been shown to control T-cell homeostasis and survival. Autophagic processes can also determine the magnitude of the T-cell response to TCR engagement, by regulating the cellular levels of specific signaling intermediates and modulating the metabolic output in activated T cells. In this review we will examine the mechanisms that control autophagy activity in T cells, such as ROS signaling and signaling through common gamma-chain cytokine receptors, and the different aspect of T-cell biology, including T-cell survival, effector cell function, and generation of memory, which can be regulated by autophagy.


Subject(s)
Autophagy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmunity , Autophagy/genetics , Autophagy/immunology , Cell Survival/genetics , Cell Survival/immunology , Energy Metabolism , Homeostasis , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunologic Memory , Immunosenescence , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Molecular Chaperones/metabolism , Organelles/immunology , Organelles/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction
7.
Nat Immunol ; 15(11): 1046-54, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25263126

ABSTRACT

Chaperone-mediated autophagy (CMA) targets soluble proteins for lysosomal degradation. Here we found that CMA was activated in T cells in response to engagement of the T cell antigen receptor (TCR), which induced expression of the CMA-related lysosomal receptor LAMP-2A. In activated T cells, CMA targeted the ubiquitin ligase Itch and the calcineurin inhibitor RCAN1 for degradation to maintain activation-induced responses. Consequently, deletion of the gene encoding LAMP-2A in T cells caused deficient in vivo responses to immunization or infection with Listeria monocytogenes. Impaired CMA activity also occurred in T cells with age, which negatively affected their function. Restoration of LAMP-2A in T cells from old mice resulted in enhancement of activation-induced responses. Our findings define a role for CMA in regulating T cell activation through the targeted degradation of negative regulators of T cell activation.


Subject(s)
Autophagy/immunology , Lymphocyte Activation/immunology , Lysosomal-Associated Membrane Protein 2/immunology , Molecular Chaperones/immunology , Th1 Cells/immunology , Aging/immunology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Calcineurin Inhibitors/metabolism , Calcium-Binding Proteins , Cells, Cultured , Dual Oxidases , Female , Humans , Immunization , Intracellular Signaling Peptides and Proteins/metabolism , Listeria monocytogenes/immunology , Listeriosis/immunology , Lysosomal-Associated Membrane Protein 2/biosynthesis , Lysosomal-Associated Membrane Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/metabolism , NADPH Oxidases/genetics , Oxidative Stress/immunology , RNA Interference , RNA, Messenger/biosynthesis , RNA, Small Interfering , Reactive Oxygen Species/metabolism , Receptors, Antigen, T-Cell/immunology , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...