Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Invest Dermatol ; 138(9): 2041-2050, 2018 09.
Article in English | MEDLINE | ID: mdl-29577917

ABSTRACT

Cutaneous wounds in adult mammals typically heal by scarring. However, large full-thickness wounds undergo wound-induced hair follicle neogenesis (WIHN), a form of regeneration. Here, we show that WIHN requires transient expression of epidermal Msx2 in two phases: the wound margin early and the wound center late. Msx2 expression is present in the migrating epithelium during early wound healing and then presents in the epithelium and mesenchyme later in the wound center. WIHN is abrogated in germline and epithelial-specific Msx2 mutant mice. Unlike the full-length Msx2 promoter, a minimal Msx2 promoter fails activation in the wound center, suggesting complex regulation of Msx2 expression. The Msx2 promoter binding sites include Tcf/Lef, Jun/Creb, Pax3, and three SMAD sites. However, basal epithelial-induced BMP suppression by noggin overexpression did not affect WIHN. We propose that Msx2 signaling is required for the epidermis to acquire spatiotemporal competence during WIHN. Topologically, hair regeneration dominates in the wound center, coinciding with late Msx2 expression. Together, these results suggest that intrinsic Msx2 expression supports epithelial competency during hair follicle neogenesis. This work provides insight into endogenous mechanisms modulating competency of adult epidermal progenitors for mammalian ectodermal appendage neogenesis, and offers the target Msx2 for future regeneration-promoting therapies.


Subject(s)
Gene Expression Regulation , Hair Follicle/pathology , Homeodomain Proteins/genetics , Regeneration/physiology , Skin/injuries , Wound Healing/genetics , Wounds and Injuries/complications , Animals , Disease Models, Animal , Hair Follicle/metabolism , Homeodomain Proteins/biosynthesis , Mice, Inbred C57BL , Mice, SCID , RNA/genetics , Signal Transduction , Skin/metabolism , Skin/pathology , Wounds and Injuries/genetics , Wounds and Injuries/metabolism
2.
Elife ; 62017 07 11.
Article in English | MEDLINE | ID: mdl-28695824

ABSTRACT

The control principles behind robust cyclic regeneration of hair follicles (HFs) remain unclear. Using multi-scale modeling, we show that coupling inhibitors and activators with physical growth of HFs is sufficient to drive periodicity and excitability of hair regeneration. Model simulations and experimental data reveal that mouse skin behaves as a heterogeneous regenerative field, composed of anatomical domains where HFs have distinct cycling dynamics. Interactions between fast-cycling chin and ventral HFs and slow-cycling dorsal HFs produce bilaterally symmetric patterns. Ear skin behaves as a hyper-refractory domain with HFs in extended rest phase. Such hyper-refractivity relates to high levels of BMP ligands and WNT antagonists, in part expressed by ear-specific cartilage and muscle. Hair growth stops at the boundaries with hyper-refractory ears and anatomically discontinuous eyelids, generating wave-breaking effects. We posit that similar mechanisms for coupled regeneration with dominant activator, hyper-refractory, and wave-breaker regions can operate in other actively renewing organs.


Subject(s)
Hair Follicle/physiology , Hair/growth & development , Animals , Mice , Models, Biological , Regeneration , Spatio-Temporal Analysis
3.
Regeneration (Oxf) ; 2(4): 169-181, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26504521

ABSTRACT

Wound induced hair follicle neogenesis (WIHN) describes a regenerative phenomenon in adult mammalian skin, wherein fully functional hair follicles regenerate de novo in the center of large excisional wounds. Originally described in rats, rabbits, sheep, and humans in 1940-60, the WIHN phenomenon was reinvestigated in mice only recently. The process of de novo hair regeneration largely duplicates the morphological and signaling features of normal embryonic hair development. Similar to hair development, WIHN critically depends on the activation of canonical WNT signaling. However, unlike hair development, WNT activation in WIHN is dependent on Fgf9 signaling generated by the immune system's gamma delta (γδ) T cells. The cellular bases of WIHN remain to be fully characterized, however, the available evidence leaves open the possibility for a blastema-like mechanism, wherein epidermal and/or dermal wound cells undergo epigenetic reprogramming toward a more plastic, embryonic-like state. De novo hair follicles do not regenerate from preexisting hair-fated bulge stem cells. This suggests that hair neogenesis is not driven by preexisting lineage-restricted progenitors, as is the case for amputation-induced mouse digit tip regeneration, but rather may require a blastema-like mechanism. The WIHN model is characterized by several intriguing features, which await further explanation. These include: (i) minimum wound size requirement for activating neogenesis, (ii) restriction of hair neogenesis to the wound's center, (iii) imperfect patterning outcomes, both in terms of neogenic hair positioning within the wound and in terms of their orientation. Future inquires into the WIHN process, made possible by a wide array of the available skin-specific genetic tools, will undoubtedly expand our understanding of the regeneration mechanisms in adult mammals.

4.
Exp Dermatol ; 24(3): 167-70, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25039994

ABSTRACT

Skin wound healing is a complex regenerative phenomenon that can result in hair follicle neogenesis. Skin regeneration requires significant contribution from the immune system and involves substantial remodelling of both epidermal and dermal compartments. In this viewpoint, we consider epigenetic regulation of reepithelialization, dermal restructuring and hair neogenesis. Because little is known about the epigenetic control of these events, we have drawn upon recent epigenetic mapping and functional studies of homeostatic skin maintenance, epithelial-mesenchymal transition in cancer, and new works on regenerative dermal cell lineages and the epigenetic events that may shape their conversion into myofibroblasts. Finally, we speculate on how these various healing components might converge for wound-induced hair follicle neogenesis.


Subject(s)
Epigenesis, Genetic , Hair/physiology , Homeostasis/genetics , Re-Epithelialization/genetics , Skin/injuries , Animals , Epithelial-Mesenchymal Transition/genetics , Humans , Myofibroblasts/physiology
5.
J Invest Dermatol ; 134(6): 1496-1498, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24825056

ABSTRACT

Cutting-edge imaging technologies and new luminescent and fluorescent genetic tools now make it possible to study hair regeneration in vivo in real time at the microscopic single-cell level and at the macroscopic level of hair follicle populations. These technologies also allow for noninvasive assessment of the skin's clinically relevant homeostatic parameters, such as oxidative stress levels and pH.


Subject(s)
Hair Follicle/growth & development , Hair/embryology , Oxidative Stress , Skin/metabolism , Skin/physiopathology , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...