Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34443727

ABSTRACT

Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogeneous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.

2.
Dalton Trans ; 50(9): 3289-3298, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33595036

ABSTRACT

Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).

3.
Chemistry ; 26(55): 12553-12559, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32369223

ABSTRACT

We report a Rh-catalyzed hydroaminomethylation reaction of terminal alkenes in glycerol that proceeds efficiently under mild conditions to produce the corresponding amines in relatively high selectivity towards linear amines, moderate to excellent yields by using a low catalyst loading (1 mol % [Rh], 2 mol % phosphine) and relative low pressure (H2 /CO, 1:1, total pressure 10 bar). This work sheds light on the importance of glycerol in enabling enamine reduction via hydrogen transfer. Moreover, evidence for the crucial role of Rh as chemoselective catalyst in the condensation step has been obtained for the first time in the frame of the hydroaminomethylation reaction by precluding deleterious aldol condensation reactions. The hydroaminomethylation proceeds under a molecular regime; the outcome of catalytically active species into metal-based nanoparticles renders the catalytic system inactive.

4.
Dalton Trans ; 47(11): 3739-3744, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29441398

ABSTRACT

The asymmetric allylic alkylation of rac-1,3-diphenyl-3-acetoxyprop-1-ene (I) catalysed by palladium and diverse phosphorus containing ligands [(S)-BINAP, (R,R)-Chiraphite and (R,R)-Et-Duphos] in an ionic liquid [HDBU][OAc] was successfully performed, achieving full conversions and up to 96% ee of the (S)-product when (R,R)-Et-Duphos was used as a ligand. The reaction could be performed using an equimolar amount of substrate, malonate and base DBU, in which case the total products sum to the desired alkylated product and the ionic pair [HDBU][OAc]; this system thus produces its own IL solvent as the only co-product. These catalytic systems were active in recycling experiments for up to four cycles, albeit with a loss of activity due to the poor retention of palladium in the ionic liquid. The catalytic performance of each Pd/ligand system was optimized by varying the ratio of the substrate and malonate. Systems based on [HDBU][OAc] were found to be the best.

SELECTION OF CITATIONS
SEARCH DETAIL
...