Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMJ Mil Health ; 169(4): 340-345, 2023 Aug.
Article in English | MEDLINE | ID: mdl-34413114

ABSTRACT

INTRODUCTION/BACKGROUND: As a proxy for adiposity, body mass index (BMI) provides a practical public health metric to counter obesity-related disease trends. On an individual basis, BMI cannot distinguish fat and lean components of body composition. Further, the relationship between BMI and body composition may be altered in response to physical training. We investigated this dynamic relationship by examining the effect of US Army basic combat training (BCT) on the association between BMI and per cent body fat (%BF). METHODS: BMI and %BF were measured at the beginning (week 1) and end (week 9) of BCT in female (n=504) and male (n=965) trainees. Height and weight were obtained for BMI, and body composition was obtained by dual X-ray absorptiometry. Sensitivity and specificity of BMI-based classification were determined at two BMI thresholds (25 kg/m2 and 27.5 kg/m2). RESULTS: A progressive age-related increase in fat-free mass index (FFMI) was observed, with an inflection point at age 21 years. In soldiers aged 21+, BMI of 25.0 kg/m2 predicted 33% and 29% BF in women and 23% and 20% BF in men and BMI of 27.5 kg/m2 predicted 35% and 31% BF in women and 26% and 22% BF in men, at the start and end of BCT, respectively. Sensitivity and specificity of BMI-based classification of %BF were poor. Soldiers below BMI of 20 kg/m2 had normal instead of markedly reduced %BF, reflecting especially low FFMI. CONCLUSIONS: BCT alters the BMI-%BF relationship, with lower %BF at a given BMI by the end of BCT compared with the beginning, highlighting the unreliability of BMI to try to estimate body composition. The specific BMI threshold of 25.0 kg/m2, defined as 'overweight', is an out-of-date metric for health and performance outcomes. To the extent that %BF reflects physical readiness, these data provide evidence of a fit and capable military force at BMI greater than 25.0 kg/m2.


Subject(s)
Military Personnel , Humans , Male , Female , Young Adult , Adult , Body Mass Index , Adipose Tissue/physiology , Obesity , Body Composition/physiology
2.
J Appl Physiol (1985) ; 119(2): 110-5, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25977447

ABSTRACT

Changes in body water elicit reflex adjustments at the kidney, thus maintaining fluid volume homeostasis. These renal adjustments change the concentration and color of urine, variables that can, in turn, be used as biomarkers of hydration status. It has been suggested that vitamin supplementation alters urine color; it is unclear whether any such alteration would confound hydration assessment via colorimetric evaluation. We tested the hypothesis that overnight vitamin B2 and/or B12 supplementation alters urine color as a marker of hydration status. Thirty healthy volunteers were monitored during a 3-day euhydrated baseline, confirmed via first morning nude body mass, urine specific gravity, and urine osmolality. Volunteers then randomly received B2 (n = 10), B12 (n = 10), or B2 + B12 (n = 10) at ∼200 × recommended dietary allowance. Euhydration was verified on trial days (two of the following: body mass ± 1.0% of the mean of visits 1-3, urine specific gravity < 1.02, urine osmolality < 700 mmol/kg). Vitamin purity and urinary B2 concentration ([B2]) and [B12] were quantified via ultraperformance liquid chromatography. Two independent observers assessed urine color using an eight-point standardized color chart. Following supplementation, urinary [B2] was elevated; however, urine color was not different between nonsupplemented and supplemented trials. For example, in the B2 trial, urinary [B2] increased from 8.6 × 10(4) ± 7.7 × 10(4) to 5.7 × 10(6) ± 5.3 × 10(6) nmol/l (P < 0.05), and urine color went from 4 ± 1 to 5 ± 1 (P > 0.05). Both conditions met the euhydrated color classification. We conclude that a large overnight dose of vitamins B2 and B12 does not confound assessment of euhydrated status via urine color.


Subject(s)
Biomarkers/urine , Dehydration/physiopathology , Dehydration/urine , Riboflavin/urine , Urine/chemistry , Vitamin B 12/urine , Adult , Body Mass Index , Body Water/physiology , Color , Dehydration/metabolism , Dietary Supplements , Female , Humans , Male , Water-Electrolyte Balance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...