Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Chem Sci ; 14(23): 6269-6277, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325148

ABSTRACT

Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates. Intercalation-free poly(triazine-imide) (PTI-IF) is corrugated or AB stacked and partially exfoliated. We find that the lowest energy electronic transition in PTI is forbidden due to a non-bonding uppermost valence band and that its electroluminescence from the π-π* transition is quenched which severely limits their use as emission layer in electroluminescent devices. THz conductivity in nano-crystalline PTI is up to eight orders of magnitude higher than the macroscopic conductivity of PTI films. We find that the charge carrier density of PTI nano-crystals is among the highest of all known intrinsic semiconductors, however, macroscopic charge transport in films of PTI is limited by disorder at crystal-crystal interfaces. Future device applications of PTI will benefit most from single crystal devices that make use of electron transport in the lowest, π-like conduction band.

2.
Nature ; 602(7898): 578, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35194210
3.
Angew Chem Int Ed Engl ; 61(3): e202111749, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-34634165

ABSTRACT

Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by-product of conventional PTI synthesis is a C-C carbon-rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence. We report that protonation of the PTI structure happens preferentially at the pyridinic N atoms of the triazine rings, is accompanied by exfoliation of PTI layers, and contributes to increases in quantum yield and exciton lifetimes. This study describes structure-property relationships in PTI that link the nature of defects, their formation, and how to avoid them with the optical and electronic performance of PTI. On the basis of our findings, we create an OLED prototype with PTI as the active, metal-free material.

4.
J Phys Chem Lett ; 12(40): 9899-9905, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34610238

ABSTRACT

Charge-transfer excitons (CTXs) at organic donor/acceptor interfaces are considered important intermediates for charge separation in photovoltaic devices. Crystalline model systems provide microscopic insights into the nature of such states as they enable microscopic structure-property investigations. Here, we use angular-resolved UV/vis absorption spectroscopy to characterize the CTXs of crystalline pentacene:perfluoro-pentacene (PEN:PFP) films allowing determination of the polarization of this state. This analysis is complemented by first-principles many-body calculations, performed on the three-dimensional PEN:PFP cocrystal, which confirm that the lowest-energy excitation is a CTX. Analogous simulations performed on bimolecular clusters are unable to reproduce this state. We ascribe this failure to the lack of long-range interactions and wave function periodicity in these cluster calculations, which appear to remain a valid tool for modeling properties of organic materials ruled by local intermolecular couplings.

5.
J Phys Chem B ; 124(35): 7694-7708, 2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32574055

ABSTRACT

The mechanism and the nature of the species formed by molecular doping of the model polymer poly(3-hexylthiophene) (P3HT) in its regioregular (rre-) and regiorandom (rra-) forms in solution are investigated for three different dopants: the prototypical π-electron acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), the strong Lewis acid tris(pentafluorophenyl)borane (BCF), and the strongly oxidizing complex molybdenum tris[1-(methoxycarbonyl)-2-(trifluoromethyl)ethane-1,2-dithiolene] (Mo(tfd-CO2Me)3). In a combined optical and electron paramagnetic resonance study, we show that the doping of rreP3HT in solution occurs by integer charge transfer, resulting in formation of P3HT radical cations (polarons) for all of the dopants considered here. Remarkably, despite the different chemical nature of the dopants and dopant-polymer interaction, the formed polarons exhibit essentially identical optical absorption spectra. The situation is very different for the doping of rraP3HT, where we observe formation of a charge-transfer complex with F4TCNQ and of a "localized" P3HT polaron on nonaggregated chains upon doping with BCF, while there is no indication of dopant-induced species in the case of Mo(tfd-CO2Me)3. We estimate the ionization efficiency of the respective dopants for the two polymers in solution and report the molar extinction coefficient spectra of the three different species. Finally, we observe increased spin delocalization in regioregular compared to regiorandom P3HT by electron nuclear double resonance, suggesting that the ability of the charge to delocalize on aggregates of planarized polymer backbones plays a significant role in determining the doping mechanism.

6.
Phys Chem Chem Phys ; 22(6): 3527-3538, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31994551

ABSTRACT

Doping in organic semiconductors remains a debated issue from both an experimental and ab initio perspective. Due to the complexity of these systems, which exhibit a low degree of crystallinity and high level of disorder, modelling doped organic semiconductors from first-principles calculations is not a trivial task, as their electronic and optical properties are sensitive to the choice of initial geometries. A crucial aspect to take into account, in view of rationalizing the electronic structure of these materials through ab initio calculations, is the role of local donor/acceptor interfaces. We address this problem in the framework of state-of-the-art density-functional theory and many-body perturbation theory, investigating the structural, electronic, and optical properties of quaterthiophene and sexithiophene oligomers doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ). We consider different model structures ranging from isolated dimers and trimers, to periodic stacks. Our results demonstrate that the choice of the initial geometry critically impacts the resulting electronic structure and the degree of charge transfer in the materials, depending on the amount and on the nature of the local interfaces between donor and acceptor species. The optical spectra appear less sensitive to these parameters at least from a first glance, although a quantitative analysis of the excitations reveals that their Frenkel or charge-transfer character is affected by the characteristics of the donor/acceptor interfaces as well as by the donor length. Our findings represent an important step forward towards an insightful first-principles description of the microscopic properties of doped organic semiconductors complementary to experiments.

7.
J Chem Theory Comput ; 15(5): 3197-3203, 2019 May 14.
Article in English | MEDLINE | ID: mdl-30986064

ABSTRACT

The definition of plasmon at the microscopic scale is far from being understood. Yet, it is very important to recognize plasmonic features in optical excitations, as they can inspire new applications and trigger new discoveries by analogy with the rich phenomenology of metal nanoparticle plasmons. Recently, the concepts of plasmonicity index and the generalized plasmonicity index (GPI) have been devised as computational tools to quantify the plasmonic nature of optical excitations. The question may arise whether any strong absorption band, possibly with some sort of collective character in its microscopic origin, shares the status of plasmon. Here we demonstrate that this is not always the case, by considering a well-known class of systems represented by J-aggregates molecular crystals, characterized by the intense J band of absorption. By means of first-principles simulations, based on a many-body perturbation theory formalism, we investigate the optical properties of a J-aggregate made of push-pull organic dyes. We show that the effect of aggregation is to lower the GPI associated with the J-band with respect to the isolated dye one, which corresponds to a nonplasmonic character of the electronic excitations. In order to rationalize our finding, we then propose a simplified one-dimensional theoretical model of the J-aggregate. A useful microscopic picture of what discriminates a collective molecular crystal excitation from a plasmon is eventually obtained.

8.
J Phys Chem C Nanomater Interfaces ; 123(11): 6831-6838, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30949274

ABSTRACT

In a first-principles study based on density functional theory and many-body perturbation theory, we address the interplay between intra- and intermolecular interactions in a J-aggregate formed by push-pull organic dyes by investigating its electronic and optical properties. We find that the most intense excitation dominating the spectral onset of the aggregate, i.e., the J-band, exhibits a combination of intramolecular charge transfer, coming from the push-pull character of the constituting dyes, and intermolecular charge transfer, due to the dense molecular packing. We also show the presence of a pure intermolecular charge-transfer excitation within the J-band, which is expected to play a relevant role in the emission properties of the J-aggregate. Our results shed light on the microscopic character of optical excitations of J-aggregates and offer new perspectives to further understand the nature of collective excitations in organic semiconductors.

9.
ACS Omega ; 3(9): 10481-10486, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30288457

ABSTRACT

J-aggregates are a class of low-dimensional molecular crystals which display enhanced interaction with light. These systems show interesting optical properties as an intense and narrow red-shifted absorption peak (J-band) with respect to the spectrum of the corresponding monomer. The need to theoretically investigate optical excitations in J-aggregates is twofold: a thorough first-principles description is still missing and a renewed interest is rising recently in understanding the nature of the J-band, in particular regarding the collective mechanisms involved in its formation. In this work, we investigate the electronic and optical properties of a J-aggregate molecular crystal made of ordered arrangements of organic push-pull chromophores. By using a time-dependent density functional theory approach, we assess the role of the molecular packing in the enhancement and red shift of the J-band along with the effects of confinement in the optical absorption, when moving from bulk to low-dimensional crystal structures. We simulate the optical absorption of different configurations (i.e., monomer, dimers, a polymer chain, and a monolayer sheet) extracted from the bulk crystal. By analyzing the induced charge density associated with the J-band, we conclude that it is a longitudinal excitation, delocalized along parallel linear chains and that its overall red shift results from competing coupling mechanisms, some giving red shift and others giving blue shift, which derive from both coupling between transition densities and renormalization of the single-particle energy levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...