Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 14(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077841

ABSTRACT

Ceramides are essential sphingolipids that mediate cell death and survival. Low ceramide content in melanoma is one mechanism of drug resistance. Thus, increasing the ceramide content in tumor cells is likely to increase their sensitivity to cytotoxic therapy. Aerobic exercise has been shown to modulate ceramide metabolism in healthy tissue, but the relationship between exercise and ceramide in tumors has not been evaluated. Here, we demonstrate that aerobic exercise causes tumor cell apoptosis and accumulation of pro-apoptotic ceramides in B16F10 but not BP melanoma models using mice. B16F10 tumor-bearing mice were treated with two weeks of moderate treadmill exercise, or were control, unexercised mice. A reverse-phase protein array was used to identify canonical p53 apoptotic signaling as a key pathway upregulated by exercise, and we demonstrate increased apoptosis in tumors from exercised mice. Consistent with this finding, pro-apoptotic C16-ceramide, and the ceramide generating enzyme ceramide synthase 6 (CerS6), were higher in B16F10 tumors from exercised mice, while pro-survival sphingosine kinase 1 (Sphk1) was lower. These data suggest that exercise contributes to B16F10 tumor cell death, possibly by modulating ceramide metabolism toward a pro-apoptotic ceramide/sphingosine-1-phosphate balance. However, these results are not consistent in BP tumors, demonstrating that exercise can have different effects on tumors of different patient or mouse origin with the same diagnosis. This work indicates that exercise might be most effective as a therapeutic adjuvant with therapies that kill tumor cells in a ceramide-dependent manner.

2.
Front Immunol ; 11: 589381, 2020.
Article in English | MEDLINE | ID: mdl-33584653

ABSTRACT

The progress in the isolation and characterization of tumor antigen (TA)-specific T lymphocytes and in the genetic modification of immune cells allowed the clinical development of adoptive cell therapy (ACT). Several clinical studies highlighted the striking clinical activity of T cells engineered to express either Chimeric Antigen (CAR) or T Cell (TCR) Receptors to target molecularly defined antigens expressed on tumor cells. The breakthrough of immunotherapy is represented by the approval of CAR-T cells specific for advanced or refractory CD19+ B cell malignancies by both the Food and Drug Administration (FDA) and the European Medicinal Agency (EMA). Moreover, advances in the manufacturing and gene editing of engineered immune cells contributed to the selection of drug products with desired phenotype, refined specificity and decreased toxicity. An important step toward the optimization of CAR-T cell therapy is the development of "off-the shelf" T cell products that allow to reduce the complexity and the costs of the manufacturing and to render these drugs available for a broad number of cancer patients. The Engineered Immune Cells in Cancer Immunotherapy (EICCI) workshop hosted in Doha, Qatar, renowned experts, from both academia and industry, to present and discuss the progress on both pre-clinical and clinical development of genetically modified immune cells, including advances in the "off-the-shelf" manufacturing. These experts have addressed also organizational needs and hurdles for the clinical grade production and application of these biological drugs.


Subject(s)
Immunotherapy , Neoplasms/therapy , Animals , Genetic Engineering , Humans , Immunotherapy, Adoptive , Qatar , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology
3.
Stem Cells Int ; 2019: 7219297, 2019.
Article in English | MEDLINE | ID: mdl-31467564

ABSTRACT

Mesenchymal stromal cells (MSCs), formerly known as mesenchymal stem cells, are nonhematopoietic multipotent cells and are emerging worldwide as the most clinically used and promising source for allogeneic cell therapy. MSCs, initially obtained from bone marrow, can be derived from several other tissues, such as adipose tissue, placenta, and umbilical cord. Diversity in tissue sourcing and manufacturing procedures has significant effects on MSC products. However, in 2006, a minimal set of standard criteria has been issued by the International Society of Cellular Therapy for defining derived MSCs. These include adherence to plastic in conventional culture conditions, particular phenotype, and multilineage differentiation capacity in vitro. Moreover, MSCs have trophic capabilities, a high in vitro self-renewal ability, and immunomodulatory characteristics. Thus, immunosuppressive treatment with MSCs has been proposed as a potential therapeutic alternative for conditions in which the immune system cells influence outcomes, such as inflammatory and autoimmune diseases. The precise mechanism by which MSCs affect functions of most immune effector cells is not completely understood but involves direct contact with immune cells, soluble mediators, and local microenvironmental factors. Recently, it has been shown that their homeostatic resting state requires activation, which can be achieved in vitro with various cytokines, including interferon-γ. In the present review, we focus on the suppressive effect that MSCs exert on the immune system and highlight the significance of in vitro preconditioning and its use in preclinical studies. We discuss the clinical aspects of using MSCs as an immunomodulatory treatment. Finally, we comment on the risk of interfering with the immune system in regard to cancer formation and development.

4.
J Transl Med ; 17(1): 219, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31288845

ABSTRACT

BACKGROUND: The pleiotropic cytokine, transforming growth factor (TGF)-ß, and CD4+CD25+Foxp3+ regulatory T cells (Tregs) play a critical role in actively suppressing antitumor immune responses. Evidence shows that TGF-ß produced by tumor cells promotes tolerance via expansion of Tregs. Our group previously demonstrated that blockade of TGF-ß signaling with a small molecule TGF-ß receptor I antagonist (SM16) inhibited primary and metastatic tumor growth in a T cell dependent fashion. In the current study, we evaluated the effect of SM16 on Treg generation and function. METHODS: Using BALB/c, FoxP3eGFP and Rag-/- mice, we performed FACS analysis to determine if SM16 blocked de novo TGF-ß-induced Treg generation in vitro and in vivo. CD4+ T cells from lymph node and spleen were isolated from control mice or mice maintained on SM16 diet, and flow cytometry analysis was used to detect the frequency of CD4+CD25-FoxP3+ and CD4+CD25+FoxP3+ T cells. In vitro suppression assays were used to determine the ability to suppress naive T cell proliferation in vitro of both CD4+CD25+FoxP3+ and CD4+CD25-FoxP3+ T cell sub-populations. We then examined whether SM16 diet exerted an inhibitory effect on primary tumor growth and correlated with changes in FoxP3+expression. ELISA analysis was used to measure IFN-γ levels after 72 h co-culture of CD4+CD25+ T cells from tumor-bearing mice on control or SM16 diet with CD4+CD25- T cells from naive donors. RESULTS: SM16 abrogates TGF-ß-induced Treg generation in vitro but does not prevent global homeostatic expansion of CD4+ T cell sub-populations in vivo. Instead, SM16 treatment causes expansion of a population of CD4+CD25-Foxp3+ Treg-like cells without significantly altering the overall frequency of Treg in lymphoreplete naive and tumor-bearing mice. Importantly, both the CD4+CD25-Foxp3+ T cells and the CD4+CD25+Foxp3+ Tregs in mice receiving SM16 diet exhibited diminished ability to suppress naive T cell proliferation in vitro compared to Treg from mice on control diet. CONCLUSIONS: These findings suggest that blockade of TGF-ß signaling is a potentially useful strategy for blunting Treg function to enhance the anti-tumor response. Our data further suggest that the overall dampening of Treg function may involve the expansion of a quiescent Treg precursor population, which is CD4+CD25-Foxp3+.


Subject(s)
Antineoplastic Agents/metabolism , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Cell Count , Cell Line, Tumor , Cell Proliferation , Female , Homeostasis , Interferon-gamma/metabolism , Lymph Nodes/cytology , Mice, Knockout , Neoplasms/pathology , Spleen/cytology , T-Lymphocytes, Regulatory/immunology , Tumor Burden
5.
Front Oncol ; 9: 1554, 2019.
Article in English | MEDLINE | ID: mdl-32039024

ABSTRACT

Tumors employ strategies to escape immune control. The principle aim of most cancer immunotherapies is to restore effective immune surveillance. Among the different processes regulating immune escape, tumor microenvironment-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD8+T cells. These dynamic immunosuppressive networks prevent tumor rejection at several levels, limiting also the success of immunotherapies. Nevertheless, the recent clinical development of immune checkpoint inhibitors or of molecules modulating cellular targets and immunosuppressive enzymes highlights the great potential of approaches based on the selective disruption of immunosuppressive networks. Currently, the administration of different categories of immunotherapy in combination regimens is the ultimate modality for impacting the survival of cancer patients. With the advent of immune checkpoint inhibitors, designed to mount an effective antitumor immune response, profound changes occurred in cancer immunotherapy: from a global stimulation of the immune system to a specific targeting of an immune component. This review will specifically highlight the players, the mechanisms limiting an efficient antitumor response and the current immunotherapy modalities tailored to target immune suppressive pathways. We also discuss the ongoing challenges encountered by these strategies and provide suggestions for circumventing hurdles to new immunotherapeutic approaches, including the use of relevant biomarkers in the optimization of immunotherapy regimens and the identification of patients who can benefit from defined immune-based approaches.

6.
J Transl Med ; 16(1): 276, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30305089

ABSTRACT

New technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called "living drugs". Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques. The Advanced Therapies in Healthcare symposium, organized by the Clinical Research Center Department of Sidra Medicine, in Doha, Qatar (October 2017), brought together world-renowned experts from the fields of oncology, hematology, immunology, inflammation, autoimmune disorders, and stem cells to offer a comprehensive picture of the status of worldwide advanced therapies in both pre-clinical and clinical development, providing insights to the research phase, clinical data and regulatory aspects of these therapies. Highlights of the meeting are provided in this meeting report.


Subject(s)
Cell- and Tissue-Based Therapy , Precision Medicine , Genetic Therapy , Humans , Immunotherapy , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/therapy , Qatar
7.
Sci Rep ; 7: 39999, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051182

ABSTRACT

The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment - a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4+EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer - endothelial cells interaction. We demonstrated that "Warburg effect" is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment.


Subject(s)
Colonic Neoplasms/metabolism , Endothelial Cells/metabolism , Lipid Metabolism , Ovarian Neoplasms/metabolism , Polysaccharides/metabolism , Cell Line, Tumor , Coculture Techniques , Female , Glycosylation , Humans , Tumor Microenvironment
8.
BMC Cancer ; 16: 199, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26957307

ABSTRACT

BACKGROUND: Alpha-tocopheryloxyacetic acid (α-TEA) is a semi-synthetic derivative of naturally occurring vitamin E (alpha-tocopherol) that can be delivered via an oral route. Preclinical in vitro and in vivo data demonstrated that α-TEA is a potent anti-tumor agent with a safe toxicity profile in mice. We report a comprehensive study to evaluate the toxokinetics of good manufacturing practice (GMP)-grade α-TEA in dogs after daily oral administration for 28 days, followed by a 28-day recovery period. METHODS: Male and female beagle dogs received capsules of α-TEA Lysine Salt at doses of 100, 300, 1500 mg/kg/day. α-TEA plasma levels were determined by high-performance liquid chromatography (HPLC) with mass spectrometric detection. During the treatment, animals were observe for clinical signs, food consumption, body weight, and subjected to ophthalmoscopic, and electrocardiographic assessments. At the end of the dosing period, blood was taken and toxicokinetic analyses and histopathology assessments were performed when animals were necropsied. RESULTS: Our findings showed that there was no α-TEA-related mortality or moribundity. At the highest dose, increases in white blood cells and fibrinogen levels were observed. These levels returned to normal at the end of the recovery period. Histopathological evaluation of major organs revealed no significant lesions related to α-TEA-treatment. CONCLUSION: We demonstrate that for designing clinical trials in patients, the highest non-severely toxic dose (HNSTD) of α-TEA is 1500 mg/kg/day in Beagle dogs and this data informed the design of dose-escalation studies of α-TEA in patients with advanced cancer.


Subject(s)
Tocopherols/pharmacokinetics , Tocopherols/toxicity , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Biopsy , Blood Cell Count , Blood Chemical Analysis , Blood Coagulation/drug effects , Blood Coagulation Tests , Dogs , Female , Lysine , Male , Salts , Time Factors , Tocopherols/administration & dosage , Tocopherols/chemistry , Toxicity Tests , Toxicokinetics , Urinalysis
9.
J Transl Med ; 13: 223, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26169745

ABSTRACT

BACKGROUND: In this era of precision medicine, the deep and comprehensive characterization of tumor phenotypes will lead to therapeutic strategies beyond classical factors such as primary sites or anatomical staging. Recently, "-omics" approached have enlightened our knowledge of tumor biology. Such approaches have been extensively implemented in order to provide biomarkers for monitoring of the disease as well as to improve readouts of therapeutic impact. The application of metabolomics to the study of cancer is especially beneficial, since it reflects the biochemical consequences of many cancer type-specific pathophysiological processes. Here, we characterize metabolic profiles of colon and ovarian cancer cell lines to provide broader insight into differentiating metabolic processes for prospective drug development and clinical screening. METHODS: We applied non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography and gas chromatography for the metabolic phenotyping of four cancer cell lines: two from colon cancer (HCT15, HCT116) and two from ovarian cancer (OVCAR3, SKOV3). We used the MetaP server for statistical data analysis. RESULTS: A total of 225 metabolites were detected in all four cell lines; 67 of these molecules significantly discriminated colon cancer from ovarian cancer cells. Metabolic signatures revealed in our study suggest elevated tricarboxylic acid cycle and lipid metabolism in ovarian cancer cell lines, as well as increased ß-oxidation and urea cycle metabolism in colon cancer cell lines. CONCLUSIONS: Our study provides a panel of distinct metabolic fingerprints between colon and ovarian cancer cell lines. These may serve as potential drug targets, and now can be evaluated further in primary cells, biofluids, and tissue samples for biomarker purposes.


Subject(s)
Colonic Neoplasms/metabolism , Metabolomics/methods , Ovarian Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Metabolic Networks and Pathways , Metabolome
10.
J Transl Med ; 13: 27, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25623554

ABSTRACT

BACKGROUND: Endothelial cells (ECs) are responsible for creating a tumor vascular niche as well as producing angiocrine factors. ECs demonstrate functional and phenotypic heterogeneity when located under different microenvironments. Here, we describe a tumor-stimulated mesenchymal phenotype in ECs and investigate its impact on tumor growth, stemness, and invasiveness. METHODS: Xenograft tumor assay in NOD/SCID mice and confocal imaging were conducted to show the acquisition of mesenchymal phenotype in tumor-associated ECs in vivo. Immunocytochemistry, qPCR and flow cytometry techniques showed the appearance of mesenchymal traits in ECs after contact with breast tumor cell lines MDA-MB231 or MCF-7. Cell proliferation, cell migration, and sphere formation assays were applied to display the functional advantages of mesenchymal ECs in tumor growth, invasiveness, and enrichment of tumor initiating cells. qPCR and western blotting were used to investigate the mechanisms underlying EC mesenchymal transition. RESULTS: Our results showed that co-injection of ECs and tumor cells in NOD/SCID mice significantly enhanced tumor growth in vivo with tumor-associated ECs expressing mesenchymal markers while maintaining their intrinsic endothelial trait. We also showed that a mesenchymal phenotype is possibly detectable in human neoplastic breast biopsies as well as ECs pre-exposed to tumor cells (ECs(Mes)) in vitro. The ECs(Mes) acquired prolonged survival, increased migratory behavior and enhanced angiogenic properties. In return, ECs(Mes) were capable of enhancing tumor survival and invasiveness. The mesenchymal phenotypes in ECs(Mes) were the result of a contact-dependent transient phenomenon and reversed upon removal of the neoplastic contexture. We showed a synergistic role for TGFß and notch pathways in this phenotypic change, as simultaneous inhibition of notch and TGFß down-regulated Smad1/5 phosphorylation and Jag1(KD) tumor cells were unable to initiate the process. CONCLUSIONS: Overall, our data proposed a crosstalk mechanism between tumor and microenvironment where tumor-stimulated mesenchymal modulation of ECs enhanced the constitution of a transient mesenchymal/endothelial niche leading to significant increase in tumor proliferation, stemness, and invasiveness. The possible involvement of notch and TGFß pathways in the initiation of mesenchymal phenotype may propose new stromal targets.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Human Umbilical Vein Endothelial Cells/pathology , Mesoderm/pathology , Receptors, Notch/metabolism , Tumor Microenvironment , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mesoderm/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Phenotype , Signal Transduction/genetics , Transcriptome/genetics , Transforming Growth Factor beta/metabolism , Xenograft Model Antitumor Assays
11.
Mol Cancer Ther ; 13(12): 3123-36, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25319392

ABSTRACT

Ovarian cancer is the second leading cause of cancer-related death in women worldwide. Despite optimal cytoreduction and adequate adjuvant therapies, initial tumor response is often followed by relapse suggesting the existence of a tumor niche. Targeted therapies have been evaluated in ovarian cancer to overcome resistant disease. Among them, antiangiogenic therapies inhibit new blood vessel growth, induce endothelial cell apoptosis, and block the incorporation of hematopoietic and endothelial progenitor cells into new blood vessels. Despite in vitro and in vivo successes, antivascular therapy with bevacizumab targeting VEGF-A has limited efficacy in ovarian cancer. The precise molecular mechanisms underlying clinical resistance to anti-VEGF therapies are not yet well understood. Among them, tumor and stromal heterogeneity might determine the treatment outcomes. The present study investigates whether abnormalities in the tumor endothelium may contribute to treatment resistance to bevacizumab and promote a residual microscopic disease. Here, we showed that ovarian cancer cells activate Akt phosphorylation in endothelial cells inducing resistance to bevacizumab leading to an autocrine loop based on FGF2 secretion. Altogether, our results point out the role of an activated endothelium in the resistance to bevacizumab and in the constitution of a niche for a residual disease.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Drug Resistance, Neoplasm , Endothelium/metabolism , Endothelium/pathology , Neoplasm, Residual , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Bevacizumab , Cell Communication , Cell Line , Cell Survival/drug effects , Enzyme Activation , Female , Fibroblast Growth Factor 2/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Models, Biological , Ovarian Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects
12.
Cancer Microenviron ; 7(1-2): 41-59, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24424657

ABSTRACT

The tumor stroma plays an essential role in tumor growth, resistance to therapy and occurrence of metastatic phenotype. Tumor vessels have been considered as passive conducts for nutrients but several studies have demonstrated secretion of pro-tumoral factors by endothelial cells. The failure of anti-angiogenic therapies to meet expectations raised by pre-clinical studies prompt us to better study the cross-talk between endothelial and cancer cells. Here, we hypothesized that tumor cells and the endothelium secrete bio-active microparticles (MPs) participating to a functional cross-talk. We characterized the cancer cells MPs, using breast and ovarian cancer cell lines (MCF7, MDA-MB231, SKOV3, OVCAR3 and a primary cell lines, APOCC). Our data show that MPs from mesenchymal-like cell lines (MDA-MB231, SKOV3 and APOCC) were able to promote an activation of endothelial cells through Akt phosphorylation, compared to MPs from epithelial-like cell lines (OVCAR3 and MCF7). The MPs from mesenchymal-like cells contained increased angiogenic molecules including PDGF, IL8 and angiogenin. The endothelial activation was associated to increased Arf6 expression and MPs secretion. Endothelial activation functionalized an MP dependent pro-tumoral vascular niche promoting cancer cells proliferation, invasiveness, stem cell phenotype and chemoresistance. MPs from cancer and endothelial cells displayed phenotypic heterogeneity, and participated to a functional cross-talk where endothelial activation by cancer MPs resulted in increased secretion of EC-MPs sustaining tumor cells. Such cross-talk may play a role in perfusion independent role of the endothelium.

13.
Biomed Res Int ; 2013: 676845, 2013.
Article in English | MEDLINE | ID: mdl-24350282

ABSTRACT

BACKGROUND: P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR) and the flow cytometer to detect the P-gp efflux activity using calcein-AM. RESULTS: The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct E max and EC50 values, we cannot only rely on the MPR. CONCLUSION: Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/metabolism , Drug Resistance, Multiple/physiology , Drug Resistance, Neoplasm/physiology , Fluoresceins/metabolism , Cell Line, Tumor , Fluorescence , Humans , MCF-7 Cells , Reproducibility of Results
14.
J Transl Med ; 11: 94, 2013 Apr 10.
Article in English | MEDLINE | ID: mdl-23574623

ABSTRACT

Our vision of cancer has changed during the past decades. Indeed tumors are now perceived as complex entities where tumoral and stromal components interact closely. Among the different elements of tumor stroma the cellular component play a primordial role. Bone Marrow derived mesenchymal cells (MSCs) are attracted to tumor sites and support tumor growth. Endothelial cells (ECs) play a major role in angiogenesis. While the literature documents many aspects of the cross talk between stromal and cancer cells, the role of direct hetero-cellular contact is not clearly established. Recently, Tunneling nanotubes (TnTs) have been shown to support cell-to-cell transfers of plasma membrane components, cytosolic molecules and organelles within cell lines. Herein, we have investigated the formation of heterocellular TnTs between stromal (MSCs and ECs) and cancer cells. We demonstrate that TnTs occur between different cancer cells, stromal cells and cancer-stromal cell lines. We showed that TnTs-like structure occurred in 3D anchorage independent spheroids and also in tumor explant cultures. In our culture condition, TnTs formation occurred after large membrane adhesion. We showed that intercellular transfers of cytoplasmic content occurred similarly between cancer cells and MSCs or ECs, but we highlighted that the exchange of mitochondria occurred preferentially between endothelial cells and cancer cells. We illustrated that the cancer cells acquiring mitochondria displayed chemoresistance. Our results illustrate the perfusion-independent role of the endothelium by showing a direct endothelial to cancer cell mitochondrial exchange associated to phenotypic modulation. This supports another role of the endothelium in the constitution of the metastatic niche.


Subject(s)
Bone Marrow Cells/cytology , Drug Resistance, Neoplasm , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Cell Adhesion , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival , Coculture Techniques/methods , Female , Green Fluorescent Proteins/metabolism , Humans , MCF-7 Cells , Nanotubes/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neovascularization, Pathologic , Ovarian Neoplasms/metabolism
15.
Stem Cells Int ; 2011: 375857, 2011.
Article in English | MEDLINE | ID: mdl-22190963

ABSTRACT

Stem cell self-renewal is regulated by intrinsic mechanisms and extrinsic signals mediated via specialized microenvironments called "niches." The best-characterized stem cell is the hematopoietic stem cell (HSC). Self-renewal and differentiation ability of HSC are regulated by two major elements: endosteal and vascular regulatory elements. The osteoblastic niche localized at the inner surface of the bone cavity might serve as a reservoir for long-term HSC storage in a quiescent state. Whereas the vascular niche, which consists of sinusoidal endothelial cell lining blood vessel, provides an environment for short-term HSC proliferation and differentiation. Both niches act together to maintain hematopoietic homeostasis. In this paper, we provide some principles applying to the hematopoietic niches, which will be useful in the study and understanding of other stem cell niches. We will discuss altered microenvironment signaling leading to myeloid lineage disease. And finally, we will review some data on the development of acute myeloid leukemia from a subpopulation called leukemia-initiating cells (LIC), and we will discuss on the emerging evidences supporting the influence of the microenvironment on chemotherapy resistance.

16.
Anticancer Res ; 31(2): 427-41, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21378321

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) likely derive from clones in the primary tumor, suggesting that they can be used for all biological tests applying to the primary cells. MATERIALS AND METHODS: The ScreenCell® devices are single-use and low-cost innovative devices that use a filter to isolate and sort tumor cells by size. RESULTS: The ScreenCell® Cyto device is able to isolate rare, fixed, tumor cells, with a high recovery rate. Cells are well preserved morphologically. Immunocytochemistry and FISH assays can be performed directly on the filter. The ScreenCell® CC device allows isolation of live cells able to grow in culture. High quality genetic materials can be obtained directly from tumor cells isolated on the ScreenCell® MB device filter. CONCLUSION: Due to their reduced size, versatility, and capacity to isolate CTCs within minutes, the ScreenCell® devices may be able to simplify and improve non-invasive access to tumor cells.


Subject(s)
Cytological Techniques/instrumentation , Cytological Techniques/methods , Neoplastic Cells, Circulating/pathology , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Separation/instrumentation , Cell Separation/methods , Cell Size , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , Exons , Filtration/instrumentation , Filtration/methods , Gene Deletion , HT29 Cells , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction
17.
Clin Cancer Res ; 16(4): 1149-58, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20145167

ABSTRACT

PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of <1 x 10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.


Subject(s)
Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Pyrimidines/pharmacology , Thiazoles/pharmacology , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , Dasatinib , Humans , Proto-Oncogene Proteins c-kit/genetics , src-Family Kinases/antagonists & inhibitors
18.
Pediatr Blood Cancer ; 53(6): 1132-5, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19484755

ABSTRACT

Tyrosine kinase inhibitors, such as imatinib, have dramatically improved the outcomes for patients with selected cancers. For imatinib, western blotting of phospho-CrkL was an insensitive, indirect, and descriptive method to determine drug efficacy. Greater use of targeted therapies should involve more quantitative evaluation of the target's dose-inhibition. The Src/Abl kinase inhibitor dasatinib has recently been approved for use in Ph+ leukemias after failure with imatinib. Src family kinases (SFK) also play a critical role in nonhematologic cancers. We have developed a flow cytometric assay to measure SFK autophosphorylation levels in blood mononuclear cells and observed a direct correlation between its inhibition and patient dosage. This method provides a sensitive, quick, and quantitative tool to assess drug efficacy.


Subject(s)
Pyrimidines/therapeutic use , Thiazoles/therapeutic use , src-Family Kinases/metabolism , Child , Dasatinib , Flow Cytometry , Humans , Methods , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...