Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Multiphys ; 62024 Jun.
Article in English | MEDLINE | ID: mdl-38933498

ABSTRACT

Knowledge of the mechanical properties of brain tissue in vivo is essential to understanding the mechanisms underlying traumatic brain injury (TBI) and to creating accurate computational models of TBI and neurosurgical simulation. Brain white matter, which is composed of aligned, myelinated, axonal fibers, is structurally anisotropic. White matter in vivo also exhibits mechanical anisotropy, as measured by magnetic resonance elastography (MRE), but measurements of anisotropy obtained by mechanical testing of white matter ex vivo have been inconsistent. The minipig has a gyrencephalic brain with similar white matter and gray matter proportions to humans and therefore provides a relevant model for human brain mechanics. In this study, we compare estimates of anisotropic mechanical properties of the minipig brain obtained by identical, non-invasive methods in the live (in vivo) and dead animals (in situ). To do so, we combine wave displacement fields from MRE and fiber directions derived from diffusion tensor imaging (DTI) with a finite element-based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal alive and at specific times post-mortem. These maps show that white matter is stiffer, more dissipative, and more anisotropic than gray matter when the minipig is alive, but that these differences largely disappear post-mortem, with the exception of tensile anisotropy. Overall, brain tissue becomes stiffer, less dissipative, and less mechanically anisotropic post-mortem. These findings emphasize the importance of testing brain tissue properties in vivo. Statement of Significance: In this study, MRE and DTI in the minipig were combined to estimate, for the first time, anisotropic mechanical properties in the living brain and in the same brain after death. Significant differences were observed in the anisotropic behavior of brain tissue post-mortem. These results demonstrate the importance of measuring brain tissue properties in vivo as well as ex vivo, and provide new quantitative data for the development of computational models of brain biomechanics.

2.
J Biomech ; 156: 111676, 2023 07.
Article in English | MEDLINE | ID: mdl-37329640

ABSTRACT

The mechanical role of the skull-brain interface is critical to the pathology of concussion and traumatic brain injury (TBI) and may evolve with age. Here we characterize the skull-brain interface in juvenile, female Yucatan mini-pigs from 3 to 6 months old using techniques from magnetic resonance elastography (MRE). The displacements of the skull and brain were measured by a motion-sensitive MR imaging sequence during low-amplitude harmonic motion of the head. Each animal was scanned four times at 1-month intervals. Harmonic motion at 100 Hz was excited by three different configurations of a jaw actuator in order to vary the direction of loading. Rigid-body linear motions of the brain and skull were similar, although brain rotations were consistently smaller than corresponding skull rotations. Relative displacements between the brain and skull were estimated for voxels on the surface of the brain. Amplitudes of relative displacements between skull and brain were 1-3 µm, approximately 25-50% of corresponding skull displacements. Maps of relative displacement showed variations by anatomical region, and the normal component of relative displacement was consistently 25-50% of the tangential component. These results illuminate the mechanics of the skull-brain interface in a gyrencephalic animal model relevant to human brain injury and development.


Subject(s)
Brain , Elasticity Imaging Techniques , Animals , Female , Humans , Swine , Infant , Swine, Miniature , Biomechanical Phenomena , Brain/diagnostic imaging , Skull/diagnostic imaging , Head , Motion , Magnetic Resonance Imaging/methods
3.
Neuroimage ; 277: 120234, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37369255

ABSTRACT

The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development.


Subject(s)
Diffusion Tensor Imaging , Elasticity Imaging Techniques , Animals , Female , Swine , Swine, Miniature , Elasticity Imaging Techniques/methods , Anisotropy , Brain/diagnostic imaging
4.
J Mech Behav Biomed Mater ; 138: 105652, 2023 02.
Article in English | MEDLINE | ID: mdl-36610282

ABSTRACT

The goal of this study was to design, fabricate, and characterize hydrogel lattice structures with consistent, controllable, anisotropic mechanical properties. Lattices, based on three unit-cell types (cubic, diamond, and vintile), were printed using stereolithography (SLA) of polyethylene glycol diacrylate (PEGDA). To create structural anisotropy in the lattices, unit cell design files were scaled by a factor of two in one direction in each layer and then printed. The mechanical properties of the scaled lattices were measured in shear and compression and compared to those of the unscaled lattices. Two apparent shear moduli of each lattice were measured by dynamic shear tests in two planes: (1) parallel and (2) perpendicular to the scaling direction, or cell symmetry axis. Three apparent Young's moduli of each lattice were measured by compression in three different directions: (1) the "build" direction or direction of added layers, (2) the scaling direction, and (3) the unscaled direction perpendicular to both scaling and build directions. For shear deformation in unscaled lattices, the apparent shear moduli were similar in the two perpendicular directions. In contrast, scaled lattices exhibit clear differences in apparent shear moduli. In compression of unscaled lattices, apparent Young's moduli were independent of direction in cubic and vintile lattices; in diamond lattices Young's moduli differed in the build direction, but were similar in the other two directions. Scaled lattices in compression exhibited additional differences in apparent Young's moduli in the scaled and unscaled directions. Notably, the effects of scaling on apparent modulus differed between each lattice type (cubic, diamond, or vintile) and deformation mode (shear or compression). Scaling of 3D-printed, hydrogel lattices may be harnessed to create tunable, structures of desired shape, stiffness, and mechanical anisotropy, in both shear and compression.


Subject(s)
Anisotropy , Hydrogels , Elastic Modulus , Pressure , Printing, Three-Dimensional
5.
J Mech Behav Biomed Mater ; 126: 105046, 2022 02.
Article in English | MEDLINE | ID: mdl-34953435

ABSTRACT

Artificial neural networks (ANN), established tools in machine learning, are applied to the problem of estimating parameters of a transversely isotropic (TI) material model using data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI). We use neural networks to estimate parameters from experimental measurements of ultrasound-induced shear waves after training on analogous data from simulations of a computer model with similar loading, geometry, and boundary conditions. Strain ratios and shear-wave speeds (from MRE) and fiber direction (the direction of maximum diffusivity from diffusion tensor imaging (DTI)) are used as inputs to neural networks trained to estimate the parameters of a TI material (baseline shear modulus µ, shear anisotropy φ, and tensile anisotropy ζ). Ensembles of neural networks are applied to obtain distributions of parameter estimates. The robustness of this approach is assessed by quantifying the sensitivity of property estimates to assumptions in modeling (such as assumed loss factor) and choices in fitting (such as the size of the neural network). This study demonstrates the successful application of simulation-trained neural networks to estimate anisotropic material parameters from complementary MRE and DTI imaging data.


Subject(s)
Diffusion Tensor Imaging , Elasticity Imaging Techniques , Anisotropy , Computer Simulation , Elasticity , Neural Networks, Computer
6.
Phys Med Biol ; 66(5)2021 02 26.
Article in English | MEDLINE | ID: mdl-32512548

ABSTRACT

In this study, we describe numerical implementation of a heterogenous, nearly incompressible, transverse isotropic (NITI) finite element (FE) model with key advantages for use in MR elastography of fibrous soft tissue. MR elastography (MRE) estimates heterogenous property distributions from MR-measured harmonic motion fields based on assumed mechanical models of tissue response. Current MRE property estimation methods usually assume isotropic properties, which cause inconsistencies arising from model-data mismatch when anisotropy is present. In this study, we use a NITI model parameterized by a base shear modulus, shear anisotropy, tensile anisotropy, and an isotropic bulk modulus, which describes the mechanical behavior of tissues with aligned fiber structures well. Property and fiber direction heterogeneity are implemented at the level of FE Gauss points, which allows high-resolution diffusion tensor imaging (DTI) data to be incorporated easily into the model. The resulting code was validated against analytical solutions and a commercial FEM package, and is suitable for incorporation into nonlinear inversion MRE algorithms. Simulations of MRE in brain tissue with heterogeneous properties and anisotropic fiber tracts, which produced wavefields similar to experimental MRE, were generated from anatomical, DTI and MRE image data, allowing investigation of MRE inversion performance in a realistic setting where the ground truth and underlying mechanical behavior are known. Two established isotropic inversion algorithms-nonlinear inversion (NLI) and local direct inversion (LDI)-were applied to simulated MRE data. Both algorithms performed well in simple isotropic homogenous cases; however, heterogeneity cased substantial artifacts in LDI arising from violation of local homogeneity assumptions. NLI was able to recover accurate heterogenous displacement fields in the presence of measurement noise. Isotropic NLI inversion of simulated anisotropic data (generated using the NITI model) produced maps of isotropic mechanical properties with undesirable dependence on the wavefield. Local anisotropy also caused wavefield-dependent errors of 7% in nearby isotropic structures, compared to 10% in the anisotropic structures.


Subject(s)
Deep Brain Stimulation , Elasticity Imaging Techniques , Anisotropy , Brain/diagnostic imaging , Brain/physiology , Deep Brain Stimulation/methods , Diffusion Tensor Imaging , Models, Biological
7.
J Biomech Eng ; 142(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32006012

ABSTRACT

Magnetic resonance elastography (MRE) has emerged as a sensitive imaging technique capable of providing a quantitative understanding of neural microstructural integrity. However, a reliable method for the quantification of the anisotropic mechanical properties of human white matter is currently lacking, despite the potential to illuminate the pathophysiology behind neurological disorders and traumatic brain injury. In this study, we examine the use of multiple excitations in MRE to generate wave displacement data sufficient for anisotropic inversion in white matter. We show the presence of multiple unique waves from each excitation which we combine to solve for parameters of an incompressible, transversely isotropic (ITI) material: shear modulus, µ, shear anisotropy, ϕ, and tensile anisotropy, ζ. We calculate these anisotropic parameters in the corpus callosum body and find the mean values as µ = 3.78 kPa, ϕ = 0.151, and ζ = 0.099 (at 50 Hz vibration frequency). This study demonstrates that multi-excitation MRE provides displacement data sufficient for the evaluation of the anisotropic properties of white matter.


Subject(s)
Brain , Elasticity Imaging Techniques , Vibration
8.
J Biomech Eng ; 142(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-31980814

ABSTRACT

This paper describes a new method for estimating anisotropic mechanical properties of fibrous soft tissue by imaging shear waves induced by focused ultrasound (FUS) and analyzing their direction-dependent speeds. Fibrous materials with a single, dominant fiber direction may exhibit anisotropy in both shear and tensile moduli, reflecting differences in the response of the material when loads are applied in different directions. The speeds of shear waves in such materials depend on the propagation and polarization directions of the waves relative to the dominant fiber direction. In this study, shear waves were induced in muscle tissue (chicken breast) ex vivo by harmonically oscillating the amplitude of an ultrasound beam focused in a cylindrical tissue sample. The orientation of the fiber direction relative to the excitation direction was varied by rotating the sample. Magnetic resonance elastography (MRE) was used to visualize and measure the full 3D displacement field due to the ultrasound-induced shear waves. The phase gradient (PG) of radially propagating "slow" and "fast" shear waves provided local estimates of their respective wave speeds and directions. The equations for the speeds of these waves in an incompressible, transversely isotropic (TI), linear elastic material were fitted to measurements to estimate the shear and tensile moduli of the material. The combination of focused ultrasound and MR imaging allows noninvasive, but comprehensive, characterization of anisotropic soft tissue.


Subject(s)
Elasticity Imaging Techniques , Finite Element Analysis , Anisotropy , Elasticity
9.
J Biomech ; 69: 10-18, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29395225

ABSTRACT

The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies.


Subject(s)
Brain/diagnostic imaging , Elasticity Imaging Techniques , Magnetic Resonance Imaging , Mechanical Phenomena , Swine , Animals , Biomechanical Phenomena , Models, Theoretical , Swine, Miniature
10.
J Biomech Eng ; 139(8)2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28617908

ABSTRACT

Hernia meshes significantly reduce the recurrence rates in hernia repair. It is known that they affect the abdominal wall postimplantation, yet the understanding of in vivo mechanics in the mesh placement area is lacking. We established a single C-arm biplane fluoroscopic system to study strains at the interface between the mesh and repaired abdominal tissues. We aimed to validate this system for future porcine hernia repair studies. Custom matlab programs were written to correct for pincushion distortion, and direct linear transformation (DLT) reconstructed objects in 3D. Using a custom biplane-trough setup, image sets were acquired throughout the calibrated volume to evaluate a radio-opaque test piece with known distances between adjacent beads. Distances were measured postprocessing and compared to known measurements. Repeatability testing was conducted by taking image sets of the test piece in a fixed location to determine system movement. The error in areal stretch tracking was evaluated by imaging a square plate with fixed radio-opaque beads and using matlab programs to compare the measured areal stretch to known bead positions. Minor differences between measured and known distances in the test piece were not statistically different, and the system yielded a 0.01 mm bias in the XY plane and a precision of 0.61 mm. The measured areal stretch was 0.996, which was not significantly different than the expected value of 1. In addition, preliminary stretch data for a hernia mesh in a porcine model demonstrated technique feasibility to measure in vivo porcine abdominal mechanics.


Subject(s)
Abdominal Wall/diagnostic imaging , Fluoroscopy/methods , Abdominal Wall/anatomy & histology , Animals , Biomechanical Phenomena , Imaging, Three-Dimensional , Swine , Swine, Miniature
11.
IEEE Trans Haptics ; 6(3): 296-308, 2013.
Article in English | MEDLINE | ID: mdl-24808326

ABSTRACT

In this paper, we present results from a study of prehensile human hand use during the daily work activities of four subjects: two housekeepers and two machinists. Subjects wore a head-mounted camera that recorded their hand usage during their daily work activities in their typical place of work. For each subject, 7.45 hours of video was analyzed, recording the type of grasp being used and its duration. From this data, we extracted overall grasp frequency, duration distributions for each grasp, and common transitions between grasps. The results show that for 80 percent of the study duration the housekeepers used just five grasps and the machinists used 10. The grasping patterns for the different subjects were compared, and the overall top 10 grasps are discussed in detail. The results of this study not only lend insight into how people use their hands during daily tasks, but can also inform the design of effective robotic and prosthetic hands.


Subject(s)
Activities of Daily Living , Hand Strength/physiology , Motor Skills/physiology , Work , Adult , Artificial Limbs , Biomechanical Phenomena/physiology , Female , Hand , Humans , Male , Middle Aged , Robotics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...