Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 18(3): e1010059, 2022 03.
Article in English | MEDLINE | ID: mdl-35245290

ABSTRACT

Vascular Ehlers-Danlos syndrome is a rare inherited disorder caused by genetic variants in type III collagen. Its prognosis is especially hampered by unpredictable arterial ruptures and there is no therapeutic consensus. We created a knock-in Col3a1+/G182R mouse model and performed a complete genetic, molecular and biochemical characterization. Several therapeutic strategies were also tested. Col3a1+/G182R mice showed a spontaneous mortality caused by thoracic aortic rupture that recapitulates the vascular Ehlers-Danlos syndrome with a lower survival rate in males, thin non-inflammatory arteries and an altered arterial collagen. Transcriptomic analysis of aortas showed upregulation of genes related to inflammation and cell stress response. Compared to water, survival rate of Col3a1+/G182R mice was not affected by beta-blockers (propranolol or celiprolol). Two other vasodilating anti-hypertensive agents (hydralazine, amlodipine) gave opposite results on aortic rupture and mortality rate. There was a spectacular beneficial effect of losartan, reversed by the cessation of its administration, and a marked deleterious effect of exogenous angiotensin II. These results suggest that blockade of the renin angiotensin system should be tested as a first-line medical therapy in patients with vascular Ehlers-Danlos syndrome.


Subject(s)
Aortic Rupture , Ehlers-Danlos Syndrome , Animals , Aortic Rupture/genetics , Aortic Rupture/prevention & control , Arteries , Collagen Type III/genetics , Disease Models, Animal , Ehlers-Danlos Syndrome/drug therapy , Ehlers-Danlos Syndrome/genetics , Humans , Male , Mice
2.
PLoS One ; 9(1): e86658, 2014.
Article in English | MEDLINE | ID: mdl-24475165

ABSTRACT

Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries.


Subject(s)
Bioreactors , Drug Delivery Systems/methods , Malaria Vaccines/biosynthesis , Pichia/metabolism , Plasmodium berghei/chemistry , Protozoan Proteins/metabolism , Animals , Drug Discovery , Fluorescent Antibody Technique , Malaria Vaccines/administration & dosage , Measles virus/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron , Nucleoproteins/metabolism , Protozoan Proteins/isolation & purification , Ribonucleoproteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...