Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(3): 037404, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32745427

ABSTRACT

Kß x-ray emission spectroscopy is a powerful probe for electronic structure analysis of 3d transition metal systems and their ultrafast dynamics. Selectively enhancing specific spectral regions would increase this sensitivity and provide fundamentally new insights. Recently we reported the observation and analysis of Kα amplified spontaneous x-ray emission from Mn solutions using an x-ray free-electron laser to create the 1s core-hole population inversion [Kroll et al., Phys. Rev. Lett. 120, 133203 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.133203]. To apply this new approach to the chemically more sensitive but much weaker Kß x-ray emission lines requires a mechanism to outcompete the dominant amplification of the Kα emission. Here we report the observation of seeded amplified Kß x-ray emission from a NaMnO_{4} solution using two colors of x-ray free-electron laser pulses, one to create the 1s core-hole population inversion and the other to seed the amplified Kß emission. Comparing the observed seeded amplified Kß emission signal with that from conventional Kß emission into the same solid angle, we obtain a signal enhancement of more than 10^{5}. Our findings are the first important step of enhancing and controlling the emission of selected final states of the Kß spectrum with applications in chemical and materials science.

2.
Phys Rev Lett ; 120(26): 264802, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004747

ABSTRACT

The fresh-slice technique improved the performance of several self-amplified spontaneous emission free-electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation has required a special insertion device to create the beam yaw, called a dechirper. We demonstrate a novel scheme to enable fresh-slice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.

3.
Phys Rev Lett ; 120(26): 264801, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004769

ABSTRACT

We demonstrate a novel multistage amplification scheme for self-amplified spontaneous-emission free electron lasers for the production of few femtosecond pulses with very high power in the soft x-ray regime. The scheme uses the fresh-slice technique to produce an x-ray pulse on the bunch tail, subsequently amplified in downstream undulator sections by fresh electrons. With three-stages amplification, x-ray pulses with an energy of hundreds of microjoules are produced in few femtoseconds. For single-spike spectra x-ray pulses the pulse power is increased more than an order of magnitude compared to other techniques in the same wavelength range.

4.
Phys Rev Lett ; 120(13): 133203, 2018 Mar 30.
Article in English | MEDLINE | ID: mdl-29694162

ABSTRACT

We report the observation and analysis of the gain curve of amplified Kα x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ∼1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ∼1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ∼10^{20} W/cm^{2} for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

5.
Phys Rev Lett ; 120(1): 014801, 2018 Jan 05.
Article in English | MEDLINE | ID: mdl-29350964

ABSTRACT

X-ray free-electron lasers combine a high pulse power, short pulse length, narrow bandwidth, and high degree of transverse coherence. Any increase in the photon pulse power, while shortening the pulse length, will further push the frontier on several key x-ray free-electron laser applications including single-molecule imaging and novel nonlinear x-ray methods. This Letter shows experimental results at the Linac Coherent Light Source raising its maximum power to more than 300% of the current limit while reducing the photon pulse length to 10 fs. This was achieved by minimizing residual transverse-longitudinal centroid beam offsets and beam yaw and by correcting the dispersion when operating over 6 kA peak current with a longitudinally shaped beam.

SELECTION OF CITATIONS
SEARCH DETAIL
...