Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(3): e03635, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32258481

ABSTRACT

Lysosomal storage diseases (LSDs) are a group of about 50 inborn errors of metabolism characterized by the lysosomal accumulation of partially or non-degraded molecules due to mutations in proteins involved in the degradation of macromolecules, transport, lysosomal biogenesis or modulators of lysosomal environment. Significant advances have been achieved in the diagnosis, management, and treatment of LSDs patients. In terms of approved therapies, these include enzyme replacement therapy (ERT), substrate reduction therapy, hematopoietic stem cell transplantation, and pharmacological chaperone therapy. In this review, we summarize the Colombian experience in LSDs thorough the evidence published. We identified 113 articles published between 1995 and 2019 that included Colombian researchers or physicians, and which were mainly focused in Mucopolysaccharidoses, Pompe disease, Gaucher disease, Fabry disease, and Tay-Sachs and Sandhoff diseases. Most of these articles focused on basic research, clinical cases, and mutation reports. Noteworthy, implementation of the enzyme assay in dried blood samples, led to a 5-fold increase in the identification of LSD patients, suggesting that these disorders still remain undiagnosed in the country. We consider that the information presented in this review will contribute to the knowledge of a broad spectrum of LSDs in Colombia and will also contribute to the development of public policies and the identification of research opportunities.

2.
Cartilage ; 10(2): 157-172, 2019 04.
Article in English | MEDLINE | ID: mdl-28933195

ABSTRACT

OBJECTIVE: Hyaline cartilage degenerative pathologies induce morphologic and biomechanical changes resulting in cartilage tissue damage. In pursuit of therapeutic options, electrical and mechanical stimulation have been proposed for improving tissue engineering approaches for cartilage repair. The purpose of this review was to highlight the effect of electrical stimulation and mechanical stimuli in chondrocyte behavior. DESIGN: Different information sources and the MEDLINE database were systematically revised to summarize the different contributions for the past 40 years. RESULTS: It has been shown that electric stimulation may increase cell proliferation and stimulate the synthesis of molecules associated with the extracellular matrix of the articular cartilage, such as collagen type II, aggrecan and glycosaminoglycans, while mechanical loads trigger anabolic and catabolic responses in chondrocytes. CONCLUSION: The biophysical stimuli can increase cell proliferation and stimulate molecules associated with hyaline cartilage extracellular matrix maintenance.


Subject(s)
Cartilage, Articular/cytology , Chondrocytes/physiology , Hyaline Cartilage/cytology , Osteoarthritis/physiopathology , Physical Stimulation/methods , Aggrecans/physiology , Animals , Cartilage, Articular/physiopathology , Cell Proliferation/physiology , Collagen Type II/physiology , Electric Stimulation/methods , Electric Stimulation Therapy/methods , Extracellular Matrix/physiology , Glycosaminoglycans/physiology , Humans , Hyaline Cartilage/physiopathology , Tissue Engineering/methods
3.
Anat Histol Embryol ; 48(2): 117-124, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30585347

ABSTRACT

In mammals, long bones are formed by ossification of a cartilaginous mould during early stages of development, through the formation of structures called the primary ossification centre, the secondary ossification centres (SOCs) and the physeal cartilages (PCs). The PC is responsible for long bone growth. The morphology of the PC and the SOCs varies during different stages of femoral growth. In this respect, several details involving the process of murine femoral development are lacking. In the present study, a morphological characterization of femur development from the embryonic period to adulthood in mice was studied using micro-computed tomography (micro-CT). To achieve this aim, femora were collected at embryonic day (E) 14.5, E16.5 and E18.5 and at postnatal day (P)1, P7, P14, P35, P46 and P52. CT images were obtained using a micro-CT scanner (X-SkyScan 1172; Micro Photonics) and analysed using the micro-CT 3D visualization software Mimics (Materialise NV, Leuven, Belgium) and NRecon (Micro Photonics). The results of the present study revealed that the femur and its PCs and SOCs undergo morphological changes during different stages of development, including changes in their shape as well as position and thickness. These changes may be due to the response of the femur to mechanical loads imposed by muscle surrounding the bone during these stages of development. The result of the present study is important to improve our knowledge related to ossification and growth patterns of mouse femur during development.


Subject(s)
Bone Development/physiology , Cartilage/physiology , Embryo, Mammalian/physiology , Embryonic Development/physiology , Hindlimb/diagnostic imaging , X-Ray Microtomography/methods , Animals , Mice
4.
Orphanet J Rare Dis ; 13(1): 141, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115094

ABSTRACT

The use of specialized centers has been the main alternative for an appropriate diagnosis, management and follow up of patients affected by inborn errors of metabolism (IEM). These centers facilitate the training of different professionals, as well as the research at basic, translational and clinical levels. Nevertheless, few reports have described the experience of these centers and their local and/or global impact in the study of IEM. In this paper, we describe the experience of a Colombian reference center for the research, diagnosis, training and education on IEM. During the last 20 years, important advances have been achieved in the clinical knowledge of these disorders, as well as in the local availability of several diagnosis tests. Organic acidurias have been the most frequently detected diseases, followed by aminoacidopathies and peroxisomal disorders. Research efforts have been focused in the production of recombinant proteins in microorganisms towards the development of new enzyme replacement therapies, the design of gene therapy vectors and the use of bioinformatics tools for the understanding of IEM. In addition, this center has participated in the education and training of a large number professionals at different levels, which has contributed to increase the knowledge and divulgation of these disorders along the country. Noteworthy, in close collaboration with patient advocacy groups, we have participated in the discussion and construction of initiatives for the inclusion of diagnosis tests and treatments in the health system.


Subject(s)
Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/epidemiology , Colombia/epidemiology , Humans , Metabolism, Inborn Errors/epidemiology , Rare Diseases/diagnosis , Rare Diseases/epidemiology
5.
PLoS One ; 11(4): e0153136, 2016.
Article in English | MEDLINE | ID: mdl-27064989

ABSTRACT

BACKGROUND: We previously demonstrated the therapeutic benefits of pentosan polysulfate (PPS) in a rat model of mucopolysaccharidosis (MPS) type VI. Reduction of inflammation, reduction of glycosaminoglycan (GAG) storage, and improvement in the skeletal phenotype were shown. Herein, we evaluate the long-term safety and therapeutic effects of PPS in a large animal model of a different MPS type, MPS I dogs. We focused on the arterial phenotype since this is one of the most consistent and clinically significant features of the model. METHODOLOGY/PRINCIPAL FINDINGS: MPS I dogs were treated with daily oral or biweekly subcutaneous (subQ) PPS at a human equivalent dose of 1.6 mg/kg for 17 and 12 months, respectively. Safety parameters were assessed at 6 months and at the end of the study. Following treatment, cytokine and GAG levels were determined in fluids and tissues. Assessments of the aorta and carotid arteries also were performed. No drug-related increases in liver enzymes, coagulation factors, or other adverse effects were observed. Significantly reduced IL-8 and TNF-alpha were found in urine and cerebrospinal fluid (CSF). GAG reduction was observed in urine and tissues. Increases in the luminal openings and reduction of the intimal media thickening occurred in the carotids and aortas of PPS-treated animals, along with a reduction of storage vacuoles. These results were correlated with a reduction of GAG storage, reduction of clusterin 1 staining, and improved elastin integrity. No significant changes in the spines of the treated animals were observed. CONCLUSIONS: PPS treatment led to reductions of pro-inflammatory cytokines and GAG storage in urine and tissues of MPS I dogs, which were most evident after subQ administration. SubQ administration also led to significant cytokine reductions in the CSF. Both treatment groups exhibited markedly reduced carotid and aortic inflammation, increased vessel integrity, and improved histopathology. We conclude that PPS may be a safe and useful therapy for MPS I, either as an adjunct or as a stand-alone treatment that reduces inflammation and GAG storage.


Subject(s)
Mucopolysaccharidosis I/drug therapy , Pentosan Sulfuric Polyester/administration & dosage , Pentosan Sulfuric Polyester/pharmacology , Administration, Oral , Animals , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Blood Vessels/drug effects , Cervical Vertebrae/drug effects , Dogs , Female , Glycosaminoglycans/metabolism , Humans , Injections, Subcutaneous , Male , Mucopolysaccharidosis I/metabolism , Pentosan Sulfuric Polyester/adverse effects , Pentosan Sulfuric Polyester/therapeutic use , Rats , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...