Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 135(8): 084508, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895200

ABSTRACT

Following previous work [G. Odriozola and F. de J. Guevara-Rodríguez, J. Chem. Phys. 134, 201103 (2011)], the replica exchange Monte Carlo technique is used to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. Here, in addition to the analytical approximation of the overlap distance given by Berne and Pechukas (BP) and the exact numerical solution of Perram and Wertheim, we tested a simple modification of the original BP approximation (MBP) which corrects the known T-shape mismatch of BP for all aspect ratios. We found that the MBP equation of state shows a very good quantitative agreement with the exact solution. The MBP analytical expression allowed us to study size effects on the previously reported results. For the thermodynamic limit, we estimated the exact 1:5 hard ellipsoid isotropic-nematic transition at the volume fraction 0.343 ± 0.003, and the nematic-solid transition in the volume fraction interval (0.592 ± 0.006)-(0.634 ± 0.008).

2.
J Chem Phys ; 134(20): 201103, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21639414

ABSTRACT

We implemented the replica exchange Monte Carlo technique to produce the equation of state of hard 1:5 aspect-ratio oblate ellipsoids for a wide density range. For this purpose, we considered the analytical approximation of the overlap distance given by Bern and Pechukas and the exact numerical solution given by Perram and Wertheim. For both cases we capture the expected isotropic-nematic transition at low densities and a nematic-crystal transition at larger densities. For the exact case, these transitions occur at the volume fraction 0.341, and in the interval 0.584-0.605, respectively.

3.
J Phys Condens Matter ; 20(20): 205104, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21694285

ABSTRACT

The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is employed to describe the ergodic-non-ergodic transition in model mono-disperse colloidal dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The ergodic-non-ergodic phase diagram in the temperature-concentration state space is determined for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for the static structure factor by solving a remarkably simple equation for the localization length of the colloidal particles. Finite real values of this property signals non-ergodicity and determines the non-ergodic parameters f(k) and f(s)(k). The resulting phase diagram for this system, which involves the existence of reentrant (repulsive and attractive) glass states, is compared with the corresponding prediction of mode coupling theory. Although both theories coincide in the general features of this phase diagram, there are also clear qualitative differences. One of the most relevant is the SCGLE prediction that the ergodic-attractive glass transition does not preempt the gas-liquid phase transition, but always intersects the corresponding spinodal curve on its high-concentration side. We also calculate the ergodic-non-ergodic phase diagram for the sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase diagram on the choice of one important constituent element of the SCGLE theory.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(2 Pt 1): 021405, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15447489

ABSTRACT

Colloidal suspensions of Laponite clay platelets are studied by means of Brownian dynamics simulations. The platelets carry discrete charged sites which interact via a Yukawa potential. As in the paper by S. Kutter et al. [J. Chem. Phys. 112, 311 (2000)], two models are considered. In the first one all surface sites are identically negative charged, whereas in the second one, rim charges of opposite sign are included. These models mimic the behavior of the Laponite particles in different media. They are employed in a series of simulations for different Laponite concentrations and for two values of the Debye length. For the equilibrium states, the system structure is studied by center-to-center and orientational pair distribution functions. Long-time translational and rotational self-diffusion coefficients are computed by two different methods, which yield very similar results.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 1): 011405, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935141

ABSTRACT

In this work, we demonstrate the dynamic equivalence between the members of the family of Brownian fluids whose particles interact through strongly repulsive radially symmetric soft-core potentials. We specifically consider pair potentials proportional to inverse powers of (r/sigma). This equivalence is the dynamic extension of the static equivalence between all these pair potentials and the hard-sphere fluid, assumed in the treatment of soft-core reference potentials in the classical (Weeks-Chandler-Andersen or Barker-Henderson) perturbation theories of simple liquids. In contrast with the strict hard-sphere Brownian system, in the case of soft-sphere potentials the conventional Brownian dynamics algorithm is indeed well defined. We find that, except for small values of nu, and/or very short times, the dynamic properties of all these systems collapse into a single universal curve, upon a well-defined rescaling of the time and distance variables. This family of systems includes the hard-sphere limit. This observation permits a conceptually simple, new, and accurate Brownian dynamics algorithm to simulate the dynamic properties of the hard-sphere model dispersion without hydrodynamic interactions. Such an algorithm consists of the straightforward rescaling of the Brownian-dynamics simulated properties of any of the dynamically equivalent soft-sphere systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...