Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Haptics ; 14(1): 123-131, 2021.
Article in English | MEDLINE | ID: mdl-32809945

ABSTRACT

Supernumerary Robotics Limbs, or SuperLimbs for short, are wearable extra limbs for augmenting the wearer. SuperLimbs are attached directly to a human and, thereby, transmit a force from the environment to the human body. This inherent haptic feedback allows the human to perceive the interaction between the robot and the environment, monitor its actions, and effectively control the robot. This article addresses basic properties and the usefulness of the inherent haptic feedback from SuperLimbs in two exemplary cases. First, we show that the inherent haptic feedback allows the wearer to close the loop and manually regulate the force output of the SuperLimb. Second, we show that the inherent haptic feedback is sufficient for the wearer to supervise the autonomous actions of the SuperLimb. This ability is a critical requirement for safely and effectively performing multiple tasks simultaneously with the natural limbs and SuperLimbs. Together, these findings suggest the importance of designing SuperLimbs to take advantage of the inherent haptic feedback.


Subject(s)
Robotics , Feedback , Humans
2.
Development ; 144(6): 1128-1136, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28174251

ABSTRACT

Temporal manipulation of the in vitro environment and growth factors can direct differentiation of human pluripotent stem cells into organoids - aggregates with multiple tissue-specific cell types and three-dimensional structure mimicking native organs. A mechanistic understanding of early organoid formation is essential for improving the robustness of these methods, which is necessary prior to use in drug development and regenerative medicine. We investigated intestinal organoid emergence, focusing on measurable parameters of hindgut spheroids, the intermediate step between definitive endoderm and mature organoids. We found that 13% of spheroids were pre-organoids that matured into intestinal organoids. Spheroids varied by several structural parameters: cell number, diameter and morphology. Hypothesizing that diameter and the morphological feature of an inner mass were key parameters for spheroid maturation, we sorted spheroids using an automated micropipette aspiration and release system and monitored the cultures for organoid formation. We discovered that populations of spheroids with a diameter greater than 75 µm and an inner mass are enriched 1.5- and 3.8-fold for pre-organoids, respectively, thus providing rational guidelines towards establishing a robust protocol for high quality intestinal organoids.


Subject(s)
Organoids/growth & development , Tissue Engineering/methods , Cell Count , Cell Size , Cells, Cultured , Digestive System/cytology , Flow Cytometry , Humans , Organoids/cytology , Spheroids, Cellular/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...