Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 11: 1111020, 2023.
Article in English | MEDLINE | ID: mdl-36937766

ABSTRACT

Introduction: Osteoporosis is currently diagnosed based on areal bone mineral density (aBMD) computed from 2D DXA scans. However, aBMD is a limited surrogate for femoral strength since it does not account for 3D bone geometry and density distribution. QCT scans combined with finite element (FE) analysis can deliver improved femoral strength predictions. However, non-negligible radiation dose and high costs prevent a systematic usage of this technique for screening purposes. As an alternative, the 3D-Shaper software (3D-Shaper Medical, Spain) reconstructs the 3D shape and density distribution of the femur from 2D DXA scans. This approach could deliver a more accurate estimation of femoral strength than aBMD by using FE analysis on the reconstructed 3D DXA. Methods: Here we present the first independent evaluation of the software, using a dataset of 77 ex vivo femora. We extend a prior evaluation by including the density distribution differences, the spatial correlation of density values and an FE analysis. Yet, cortical thickness is left out of this evaluation, since the cortex is not resolved in our FE models. Results: We found an average surface distance of 1.16 mm between 3D DXA and QCT images, which shows a good reconstruction of the bone geometry. Although BMD values obtained from 3D DXA and QCT correlated well (r 2 = 0.92), the 3D DXA BMD were systematically lower. The average BMD difference amounted to 64 mg/cm3, more than one-third of the 3D DXA BMD. Furthermore, the low correlation (r 2 = 0.48) between density values of both images indicates a limited reconstruction of the 3D density distribution. FE results were in good agreement between QCT and 3D DXA images, with a high coefficient of determination (r 2 = 0.88). However, this correlation was not statistically different from a direct prediction by aBMD. Moreover, we found differences in the fracture patterns between the two image types. QCT-based FE analysis resulted mostly in femoral neck fractures and 3D DXA-based FE in subcapital or pertrochanteric fractures. Discussion: In conclusion, 3D-Shaper generates an altered BMD distribution compared to QCT but, after careful density calibration, shows an interesting potential for deriving a standardized femoral strength from a DXA scan.

2.
IEEE Trans Biomed Eng ; 67(4): 1159-1166, 2020 04.
Article in English | MEDLINE | ID: mdl-31380741

ABSTRACT

OBJECTIVE: Cardiac pacemakers are powered by batteries, which become exhausted after a few years. This is a problem in particular for leadless pacemakers as they are difficult to explant. Thus, autonomous devices powered by energy harvesters are desired. METHODS: We developed an energy harvester for endocardial implantation. The device contains a microgenerator to convert a flexible turbine runner's rotation into electrical energy. The turbine runner is driven by the intracardiac blood flow; a magnetic coupling allows hermetical sealing. The energy harvester has a volume of 0.34 cm3 and a weight of 1.3 g. Computational simulations were performed to assess the hemodynamic impact of the implant. The device was studied on a mock circulation and an in vivo trial was performed in a domestic pig. RESULTS: In this article, we show that an energy harvester with a 2-bladed 14-mm-diameter turbine runner delivers 10.2 ± 4.8 µW under realistic conditions (heart rate 80/min, stroke volume 75 ml) on the bench. An increased output power (>80 µW) and power density (237.1 µW/cm3) can be achieved by higher stroke volumes, increased heart rates, or larger turbine runners. The device was successfully implanted in vivo. CONCLUSION: The device is the first flow-based energy harvester suitable for catheter-based implantation and provides enough energy to power a leadless pacemaker. SIGNIFICANCE: The high power density, the small volume, and the flexible turbine runner blades facilitate the integration of the energy harvester in a pacemaker. This would allow overcoming the need for batteries in leadless pacemakers.


Subject(s)
Pacemaker, Artificial , Animals , Catheters , Electric Power Supplies , Endocardium , Equipment Design , Heart
SELECTION OF CITATIONS
SEARCH DETAIL
...