Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(15): 153904, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31050507

ABSTRACT

Slow-light waveguides can strongly enhance light-matter interaction, but suffer from a narrow bandwidth, increased backscattering, and Anderson localization. Edge states in photonic topological insulators resist backscattering and localization, but typically cross the bulk band gap over a single Brillouin zone, meaning that slow group velocity implies narrow-band operation. Here we show theoretically that this can be circumvented via an edge termination that causes the edge state to wind many times around the Brillouin zone, making it both slow and broadband.

2.
Phys Rev Lett ; 121(20): 201602, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30500233

ABSTRACT

Weak magnetic monopoles with a continuum of charges less than the minimum implied by Dirac's quantization condition may be possible in nonassociative quantum mechanics. If a weakly magnetically charged proton in a hydrogen atom perturbs the standard energy spectrum only slightly, magnetic charges could have escaped detection. Testing this hypothesis requires entirely new methods to compute energy spectra in nonassociative quantum mechanics. Such methods are presented here, and evaluated for upper bounds on the magnetic charge of elementary particles.

3.
Nature ; 553(7686): 59-62, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300011

ABSTRACT

When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...