Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 7(12): 2635-44, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19503940

ABSTRACT

An approach to the synthesis of pseudo-oligosaccharides based on the cross-metathesis reaction between distinct sugar-olefins, followed by intramolecular cyclization of the obtained heterodimer, is presented. In particular, the relative efficiency of two alternative approaches, the straightforward cross-metathesis reaction and the two-step procedure (self-metathesis followed by cross-metathesis), was explored and compared for diverse sugar-olefin substrates. Some representative examples of intramolecular cyclization using iodine as an electrophilic promoter, are also reported.


Subject(s)
Oligosaccharides/chemical synthesis , Alkenes/chemistry , Cyclization , Iodine/chemistry , Oligosaccharides/chemistry , Substrate Specificity
2.
J Biol Chem ; 283(39): 26662-75, 2008 Sep 26.
Article in English | MEDLINE | ID: mdl-18640975

ABSTRACT

The antithrombotic activity of low molecular weight heparins (LMWHs) is largely associated with the antithrombin (AT)-binding pentasaccharide sequence AGA(*)IA (GlcN(NAc/NS,6S)-GlcA-GlcN(NS,3,6S)-IdoUA(2S)-GlcN(NS,6S)). The location of the AGA(*)IA sequences along the LMWH chains is also expected to influence binding to AT. This study was aimed at investigating the role of the structure and molecular conformation of different disaccharide extensions on both sides of the AGA(*)IA sequence in modulating the affinity for AT. Four high purity octasaccharides isolated by size exclusion chromatography, high pressure liquid chromatography, and AT-affinity chromatography from the LMWH enoxaparin were selected for the study. All the four octasaccharides terminate at their nonreducing end with 4,5-unsaturated uronic acid residues (DeltaU). In two octasaccharides, AGA(*)IA was elongated at the reducing end by units IdoUA(2S)-GlcN(NS,6S) (OCTA-1) or IdoUA-GlcN(NAc,6S) (OCTA-2). In the other two octasaccharides (OCTA-3 and OCTA-4), AGA(*)IA was elongated at the nonreducing side by units GlcN(NS,6S)-IdoUA and GlcN(NS,6S)-GlcA, respectively. Extensions increased the affinity for AT of octasaccharides with respect to pentasaccharide AGA(*)IA, as also confirmed by fluorescence titration. Two-dimensional NMR and docking studies clearly indicated that, although elongation of the AGA(*)IA sequence does not substantially modify the bound conformation of the AGA(*)IA segment, extensions promote additional contacts with the protein. It should be noted that, as not previously reported, the unusual GlcA residue that precedes the AGA(*)IA sequence in OCTA-4 induced an unexpected 1 order of magnitude increase in the affinity to AT with respect to its IdoUA-containing homolog OCTA-3. Such a residue was found to orientate its two hydroxyl groups at close distance to residues of the protein. Besides the well established ionic interactions, nonionic interactions may thus contribute to strengthen oligosaccharide-AT complexes.


Subject(s)
Antithrombin III/chemistry , Heparin, Low-Molecular-Weight/chemistry , Oligosaccharides/chemistry , Antithrombin III/metabolism , Carbohydrate Conformation , Chromatography, Liquid/methods , Heparin, Low-Molecular-Weight/isolation & purification , Heparin, Low-Molecular-Weight/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Oligosaccharides/isolation & purification , Oligosaccharides/metabolism , Protein Binding/physiology
3.
Nat Biotechnol ; 26(6): 669-75, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18437154

ABSTRACT

Recently, certain lots of heparin have been associated with an acute, rapid onset of serious side effects indicative of an allergic-type reaction. To identify potential causes for this sudden rise in side effects, we examined lots of heparin that correlated with adverse events using orthogonal high-resolution analytical techniques. Through detailed structural analysis, the contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked beta1-->3 to a beta-N-acetylgalactosamine. The disaccharide unit has an unusual sulfation pattern and is sulfated at the 2-O and 3-O positions of the glucuronic acid as well as at the 4-O and 6-O positions of the galactosamine. Given the nature of this contaminant, traditional screening tests cannot differentiate between affected and unaffected lots. Our analysis suggests effective screening methods that can be used to determine whether or not heparin lots contain the contaminant reported here.


Subject(s)
Chondroitin Sulfates/analysis , Chondroitin Sulfates/chemistry , Drug Contamination/prevention & control , Drug-Related Side Effects and Adverse Reactions , Heparin/analysis , Heparin/chemistry , Drug Evaluation, Preclinical , Humans
4.
Semin Thromb Hemost ; 33(5): 466-77, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17629843

ABSTRACT

A low molecular weight heparin (LMWH) obtained by a depolymerization process induced by a Fenton-type reagent was characterized in depth by nuclear magnetic resonance (NMR) spectroscopy. The depolymerization involves the cleavage of glycosidic bonds, leading to natural terminal reducing end residues, mainly represented by N-sulfated glucosamine (A (NS)). Natural uronic acids, especially the 2- O-sulfate iduronic acid (I (2S)), are also present as reducing residues. A peculiar reaction results, such as the disappearance of the nonsulfated iduronic acid residues when followed by 6-O-nonsulfated glucosamine, and the decrease of the glucuronic acid when followed by the N-acetylglucosamine, were observed. Iduronic acid residues, followed by 6- O-sulfate glucosamine (A (Nx,6S)), and the glucuronic acid residues, followed by A (NS) residues, were not modified. A few minor internal chain modifications occur, possibly arising from oxidative breaking of the bond between C2-C3 of glucosamine and uronic acids, suggested by evidence of formation of new -COR groups. Finally, no change was observed in the content of the N-sulfated, 6-O-sulfated glucosamine bearing an extra sulfate on 3-O, which is considered the marker of the active site for antithrombin. With respect to the original heparin, this LMWH is characterized by a lower number of nonsulfated uronic acid residues, and as a consequence, by a lower degree of structural heterogeneity than LMWHs prepared with other procedures.


Subject(s)
Free Radicals/chemistry , Heparin, Low-Molecular-Weight/chemistry , Iduronic Acid/chemistry , Molecular Structure , Oxidation-Reduction
5.
Semin Thromb Hemost ; 33(5): 478-87, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17629844

ABSTRACT

Individual low molecular weight heparins (LMWHs) exhibit distinct pharmacological and biochemical profiles because of manufacturing differences. Correlation of biological properties with particular structural motifs is a major challenge in the design of new LMWHs as well as in the development of generic versions of proprietary LMWHs. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy permits identification and quantification of structural peculiarities of LMWH preparations. In this article, heteronuclear single quantum coherence spectroscopy, previously used to determine variously substituted monosaccharide components of heparan sulfate (HS) and HS-like glycosaminoglycan mimics, has been applied to the structural characterization of three commercially available LMWHs (enoxaparin, dalteparin, and tinzaparin). Relevant residues belonging to the parent heparin, as well as minor residues generated by each depolymerization procedure, have been characterized and quantified. The use of a high-sensitivity NMR spectrometer (600 MHz equipped with cryoprobe) allowed the accurate quantification of residues with sensitivity better than 1 to 2%.


Subject(s)
Heparin, Low-Molecular-Weight/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Sensitivity and Specificity
6.
Biochem J ; 399(2): 191-8, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16796563

ABSTRACT

The present study deals with the conformation in solution of two heparin octasaccharides containing the pentasaccharide sequence GlcN(NAc,6S)-GlcA-GlcN(NS,3,6S)-IdoA(2S)-GlcN(NS,6S) [AGA*IA; where GlcN(NAc,6S) is N-acetylated, 6-O-sulfated alpha-D-glucosamine, GlcN(NS,3,6S) is N,3,6-O-trisulfated alpha-D-glucosamine and IdoA(2S) is 2-O-sulfated IdoA (alpha-L-iduronic acid)] located at different positions in the heparin chain and focuses on establishing geometries of IdoA residues (IdoA(2S) and IdoA) both inside and outside the AGA*IA sequence. AGA*IA constitutes the active site for AT (antithrombin) and is essential for the expression of high anticoagulant and antithrombotic activities. Analysis of NMR parameters [NOEs (nuclear Overhauser effects), transferred NOEs and coupling constants] for the two octasaccharides indicated that between the 1C4 and 2S0 conformations present in dynamic equilibrium in the free state for the IdoA(2S) residue within AGA*IA, AT selects the 2S0 form, as previously shown [Hricovini, Guerrini, Bisio, Torri, Petitou and Casu (2001) Biochem. J. 359, 265-272]. Notably, the 2S0 conformation is also adopted by the non-sulfated IdoA residue preceding AGA*IA that, in the absence of AT, adopts predominantly the 1C4 form. These results further support the concept that heparin-binding proteins influence the conformational equilibrium of iduronic acid residues that are directly or indirectly involved in binding and select one of their equi-energetic conformations for best fitting in the complex. The complete reversal of an iduronic acid conformation preferred in the free state is also demonstrated for the first time. Preliminary docking studies provided information on the octasaccharide binding location agreeing most closely with the experimental data. These results suggest a possible biological role for the non-sulfated IdoA residue preceding AGA*IA, previously thought not to influence the AT-binding properties of the pentasaccharide. Thus, for each AT binding sequence longer than AGA*IA, the interactions with the protein could differ and give to each heparin fragment a specific biological response.


Subject(s)
Antithrombin III/metabolism , Heparin/chemistry , Heparin/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Antithrombin III/analysis , Antithrombin III/chemistry , Carbohydrate Conformation , Heparin/analysis , Humans , Iduronic Acid/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oligosaccharides/analysis , Protein Binding
7.
Anal Biochem ; 337(1): 35-47, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15649373

ABSTRACT

Biological and pharmacological interactions of heparin and structurally related glycosaminoglycans (GAGs) such as heparan sulfate (HS) involve complex sequences of variously sulfated uronic acid and aminosugar residues. Due to their structural microheterogeneity, these sequences are usually characterized in statistical terms, by high-performance liquid chromatographic analysis of fragments obtained by enzymatic or chemical degradation. Nuclear magnetic resonance (NMR) spectroscopy is also currently used for structural characterization of GAGs. However, the use of monodimensional NMR analysis of complex GAGs is often limited by severe signal overlap that does not allow reliable quantitative measurements. Using magnetically equivalent signals, the higher resolution achieved by two-dimensional NMR methods could be also exploited for quantitative applications. In this work, heteronuclear single quantum coherence (HSQC) spectroscopy has been evaluated to determine variously substituted monosaccharide components of HS and HS mimics obtained by chemical modification of the Escherichia coli K5 polysaccharide (K5-PS) structurally related to the common biosynthetic precursor of heparin and HS. Heparin was used as a model for assessing the influence of 1H-13C spin-spin couplings on "volumes" of the corresponding signals. For major signals, the HSQC approach permitted quantification of additional structural features both in heparins and in a typical HS. The method was applied to profile the substitution patterns of K5-PS derivatives involving different degrees of N,O-sulfation and N-acetylation, including O-sulfated heparosans bearing free amino groups.


Subject(s)
Glycosaminoglycans/chemistry , Magnetic Resonance Spectroscopy/methods , Acetylation , Bacterial Capsules , Escherichia coli/chemistry , Heparin/chemistry , Polysaccharides, Bacterial/chemistry , Sulfates
8.
J Med Chem ; 47(4): 838-48, 2004 Feb 12.
Article in English | MEDLINE | ID: mdl-14761186

ABSTRACT

Tumor neovascularization (angiogenesis) is regarded as a promising target for anticancer drugs. Heparin binds to fibroblast growth factor-2 (FGF2) and promotes the formation of ternary complexes with endothelial cell surface receptors, inducing an angiogenic response. As a novel strategy to generate antiangiogenic substances exploiting binding to FGF2 while preventing FGF receptor (FGFR) activation, sulfation gaps were generated along the heparin chains by controlled alkali-catalyzed removal of sulfate groups of iduronic acid 2-O-sulfate residues, giving rise to the corresponding epoxide derivatives. A new class of heparin derivatives was then obtained by opening the epoxide rings followed by oxidative glycol-splitting of the newly formed (and the preexisting) nonsulfated uronic acid residues. In vitro these heparin derivatives prevent the formation of FGFR/FGF2/heparan sulfate proteoglycan ternary complexes and inhibit FGF2-stimulated endothelial cell proliferation. They exert an antiangiogenic activity in the chick embryo chorioallantoic membrane assay, where the parent heparin is inactive. Low and very low molecular weight derivatives of a prototype compound, as well as its glycine and taurine derivatives obtained by reductive amination of glycol-split residues, retained the angiostatic activity. A significant relationship was found between the extent of glycol-splitting and the FGF2-antagonist/angiostatic activities of these heparin derivatives. Molecular dynamics calculations support the assumption that glycol-split residues act as flexible joints that, while favoring 1:1 binding to FGF2, disrupt the linearity of heparin chains necessary for formation of active complexes with FGFRs.


Subject(s)
Angiogenesis Inhibitors/chemical synthesis , Fibroblast Growth Factor 2/antagonists & inhibitors , Glycols/chemistry , Heparin/analogs & derivatives , Heparin/chemical synthesis , Sulfonic Acids/chemistry , Allantois/blood supply , Angiogenesis Inhibitors/pharmacology , Animals , Cattle , Cell Adhesion/drug effects , Cell Division/drug effects , Chick Embryo , Chorion/blood supply , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Fibroblast Growth Factor 2/metabolism , Heparin/pharmacology , In Vitro Techniques , Models, Molecular , Proteoglycans/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Structure-Activity Relationship , Uronic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...