Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 111: 104817, 2021 06.
Article in English | MEDLINE | ID: mdl-33848721

ABSTRACT

In a search for new neuropeptide S receptor antagonists, we have described a new series of quinolone-pyranopyrimidine hybrid derivatives aiming to modify the inhibitory characters towards NPSR to develop new therapeutic strategies against anxiety, addiction and food disorders. We identified six potent antagonists 3, 4b, 6, 8, 9 and 10 which counteracted the stimulatory effect of NPS at both Gq and Gs pathways, at low micromolar concentrations, through modulation of Ca2+ and cAMP signaling, respectively. Molecular docking predicted the orientation mode of the top active compounds; 10 and 4b with ΔG value of -23.94 and -23.87 kcal/mol, respectively that is considered good when compared to that of the reference compound ML154 (ΔG = -25.75 kcal/mol) . Molecular dynamic simulations confirmed the stability of binding of compound 10 to the homology model of NPSR as it reached the equilibrium after 4 ns at RMSD of 1.00 Å while ML154 was faster to achieve the equilibrium after 2 ns at RMSD of 1.00 Å.


Subject(s)
Drug Design , Quinolones/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Quinolones/chemical synthesis , Quinolones/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship
2.
Neurochem Int ; 147: 105052, 2021 07.
Article in English | MEDLINE | ID: mdl-33905764

ABSTRACT

Dithiolethiones are lipophilic, organosulfur compounds that activate the Nrf2 transcription factor causing an upregulation of various phase II antioxidant enzymes. A disubstituted dithiolethione 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) retains the functional pharmacophore while also containing modifiable functional groups. Neuroprotection against autoimmune encephalomyelitis in vivo and 6-hydroxy dopamine (a model for Parkinson's disease) in vitro have been previously reported with ACDT. Manganese (Mn) is a metal essential for metabolic processes at low concentrations. Overexposure and accumulation of Mn leads to a neurological condition called manganism which shares pathophysiological sequelae with parkinsonism. Here we hypothesized ACDT to be protective against manganese-induced cytotoxicity. SH-SY5Y human neuroblastoma cells exposed to 300 µM MnCl2 displayed approximately 50% cell death, and a 24-h pretreatment with 75 µM ACDT significantly reversed this cytotoxicity. ACDT pretreatment was also found to increase total GSH levels (2.18-fold) and the protein levels of NADPH:quinone oxidoreductase-1 (NQO1) enzyme (6.33-fold), indicating an overall increase in the cells' antioxidant defense stores. A corresponding 2.32-fold reduction in the level of Mn-induced reactive oxygen species was also observed in cells pretreated with ACDT. While no changes were observed in the protein levels of apoptotic markers Bax and Bcl-2, pretreatment with 75 µM ACDT led to a 2.09-fold downregulation of ZIP14 import transporter, indicating a potential reduction in the cellular uptake of Mn as an additional neuroprotective mechanism. These effects did not extend to other transporters like the divalent metal transporter 1 (DMT1) or ferroportin. Collectively, ACDT showed substantial neuroprotection against Mn-induced cytotoxicity, opening a path for dithiolethiones as a potential novel therapeutic option against heavy metal neurotoxicity.


Subject(s)
Esters/pharmacology , Manganese/toxicity , Neuroprotective Agents/pharmacology , Sulfhydryl Compounds/pharmacology , Cell Line, Tumor , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Humans , Manganese Poisoning/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Reactive Oxygen Species/metabolism
3.
Toxicol Appl Pharmacol ; 340: 67-76, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288688

ABSTRACT

Macamides are a distinct class of secondary metabolites, benzylamides of long chain fatty acids, which were isolated from the Peruvian plant Lepidium meyenii (Maca). As structural analogues of the endocannabinoid anandamide (AEA), they have demonstrated neuroprotective effects in vitro and in vivo. The purpose of this study was to demonstrate the neuroprotective activity of the macamides: N-(3-methoxybenzyl)oleamide (MAC 18:1), N-(3-methoxybenzyl)linoleamide (MAC 18:2) and N-(3-methoxybenzyl)linolenamide (MAC 18:3) in a neurotoxic environment caused by exposure of U-87 MG glioblastoma cells to manganese chloride (MnCl2). The neuroprotective effects of these macamides were reversed by the CB1 antagonist AM251. The mechanism by which manganese (Mn) induces cell damage was investigated by studying its effects on mitochondria. Reactive oxygen species (ROS) increase intracellular calcium and enhance the opening of mitochondrial permeability transition pores (MPTP), which leads to decreased mitochondrial membrane potential (MMP), to disruption of mitochondria and to neuron death in neurodegenerative disorders. In this study, MnCl2 at 50µM was responsible for mitochondrial disruption, which was attenuated by all three of the macamides tested. Human peroxisome proliferator-activated receptor gamma (PPARγ) has been proposed to be a cannabinoid target, and PPARγ has also been demonstrated to mediate some of the longer-term vascular effects of the plant cannabinoid, ∆9-tetrahydrocannabinol. PPARγ activation was observed in response to exposures of cells to MAC 18:2 and MAC 18:3. These findings suggest that macamides achieve their neuroprotective effects by binding to CB1 receptors to protect against Mn-induced toxicity in U-87 MG glioblastoma cells. Additionally these macamides, in a manner similar to the analogous endocannabinoid AEA, interact with other targets such as PPARγ to regulate metabolism and energy homeostasis, cell differentiation and inflammation.


Subject(s)
Glioblastoma/metabolism , Lepidium , Manganese/toxicity , Mitochondria/metabolism , Neuroprotective Agents/metabolism , Plant Extracts/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Humans , Mitochondria/drug effects , Neuroprotective Agents/isolation & purification , Neuroprotective Agents/pharmacology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Receptor, Cannabinoid, CB1/metabolism
4.
Front Pharmacol ; 8: 772, 2017.
Article in English | MEDLINE | ID: mdl-29201005

ABSTRACT

Low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic receptor involved in the uptake of a variety of molecules, such as apoE, α2-macroglobulin, and the amyloid ß peptide (Aß), for either transcellular transport, protein trafficking or lysosomal degradation. The LRP1 gene can be transcribed upon activation of peroxisome proliferator receptor activated-γ (PPARγ) by the potent PPARγ agonist, rosiglitazone (RGZ). In previous studies, RGZ was shown to upregulate LRP1 levels in concentrations between 0.1 and 5 µM in HepG2 cells. In this study, we sought to replicate previous studies and to investigate the molecular mechanism by which high concentrations of RGZ reduce LRP1 levels in HepG2 cells. Our data confirmed that transcriptional activation of LRP1 occurred in response to RGZ at 3 and 10 µM, in agreement with the study reported by Moon et al. (2012a). On the other hand, we found that high concentrations of RGZ decreased both mRNA and protein levels of LRP1. Mechanistically, transcriptional dysregulation of LRP1 was affected by the downregulation of PPARγ in a time- and concentration-dependent manner. However, downregulation of PPARγ was responsible for only 40% of the LRP1 reduction and thereby the remaining loss of LRP1 (60%) was found to be through degradation in the lysosomal system. In conclusion, our findings demonstrate the mechanisms by which high concentrations of RGZ caused LRP1 levels to be reduced in HepG2 cells. Taken together, this data will be helpful to better explain the pharmacological modulation of this pivotal membrane receptor by PPARγ agonists.

5.
Bioorg Chem ; 75: 274-290, 2017 12.
Article in English | MEDLINE | ID: mdl-29055857

ABSTRACT

In this work, we described the design, synthesis and characterization of a new class of NPSR antagonists bearing the tetracyclic coumarinyl pyranopyrimidine scaffold incorporated with different acyclic and/or heterocyclic moieties. These compounds are highlighted in this study as never being used as NPSR antagonists before which provides a model for the discovery of new bioactive inhibitors that may hold potential for drug development towards anxiety, food, and addiction disorders. Synthetic and medicinal chemistry studies led to the identification of four potent antagonists, compounds 7d, 10, 12 and 13, which were able to significantly inhibit the stimulatory effect of NPS through counteracting the increased intracellular Ca2+ accumulation. The target compound 7d was the most active derivative behaving as a pure NPSR antagonist and displaying IC50 value of 2 µM. Homology model of NPSR was built based on bovine rhodopsin structure. Modeling studies were carried out to further rationalize the NPSR binding mode of the target compounds. Moreover, molecular dynamics simulation study was performed for compounds 7d, 10 and 12 which revealed the stability of the ligand-protein complex and the reliability of the docking studies.


Subject(s)
Drug Design , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/antagonists & inhibitors , Binding Sites , Coumarins/chemistry , Cycloaddition Reaction , HEK293 Cells , Humans , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
6.
Arch Pharm (Weinheim) ; 350(9)2017 Sep.
Article in English | MEDLINE | ID: mdl-28787092

ABSTRACT

Breast and cervical cancers are the most common gender-specific cancers affecting women worldwide. In this investigation, we highlighted the synthesis, VEGFR-2 and p38α MAPK inhibitory activity of new series of fluorinated coumarin-based derivatives featuring a variety of bioactive chemical moieties attached or fused to the coumarin nucleus at the 3 and/or 4 position. The bioactive inhibitors were further assessed for their anti-proliferative effect against human MCF-7 breast cancer and HeLa cervical cancer cell lines, respectively. Most of the tested compounds showed potent preferential inhibition effects against human VEGFR-2 and remarkable anticancer activities in the human breast cancer cell line MCF-7. Compounds 29, 24, and 2 displayed the highest inhibitory activity against VEGFR-2 (94% inhibition) and they were the most potent anticancer agents toward MCF-7 cancer cells with IC50 values of 7.90, 8.28, and 8.30 µg/mL, respectively. Compound 13 inhibited p38α MAPK phosphorylation with a significant reduction in % cell viability against HeLa cancer cells at 10 and 30 µM. Docking experiments carried out on VEGFR-2 and p38 MAPK crystallographic structures revealed that the active compounds bind to the active sites through H-bonds, arene-cation, and hydrophobic π-π interactions. QSAR analysis demonstrated considerable correlation coefficient (R2 = 0.76969) and root mean square error (RMSE = 0.10446) values. Also, the residual values between the experimental pIC50 and predicted pIC50 are very close, indicating the reliability of the established QSAR model.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Coumarins/chemical synthesis , Coumarins/pharmacology , Uterine Cervical Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2/drug effects , p38 Mitogen-Activated Protein Kinases/drug effects , Female , HeLa Cells , Humans , MCF-7 Cells , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...