Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 53(1): 85-96, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24354306

ABSTRACT

A mononucleating (HL(1)) and a dinucleating (HL(2)) "end-off" compartmental ligand have been designed and synthesized by controlled Mannich reaction using p-cresol and bis(2-methoxyethyl)amine, and their formation has been rationalized. Six complexes have been prepared on treating HL(1) and HL(2) with Zn(II)X2 (X = Cl(-), Br(-), I(-)) with the aim to investigate their hydrolytic activity on phosphoester bond cleavage. Interestingly, the mononucleating ligand was observed to yield dinuclear complexes, [Zn2(L(1))2X2] (1-3), while the potential dinucleating ligand generated mononuclear complexes, [Zn(HL(2))X2] (4-6). Four (1-4), out of six complexes studied, were characterized by single-crystal X-ray diffraction (XRD): the Zn ion exhibits trigonal bipyramidal and tetrahedral coordination spheres in the di- and mononuclear complex, respectively. The hydrolytic kinetics, followed spectrophotometrically with 4-nitrophenylphosphate (4-NPP) in buffered dimethylformamide (DMF) (97.5% DMF, v/v) because of solubility reasons, under excess substrate conditions (substrate:complex = 20:1), indicated that the complexes enormously accelerate the rate of phosphomonoester hydrolysis with first order rate constants (kcat) in the range 2-10 s(-1) at 25 °C. In each case kinetic data analyses have been run by Michaelis-Menten treatment. The efficacy in the order of conversion of substrate to product (p-nitrophenolate ion) follows the trend 1 > 2 > 3 > 4 > 5 > 6, and the ratio of kcat of an analogous dinuclear to mononuclear complex is ≃2. An electrospray ionization-mass spectrometry (ESI-MS) study has revealed the dissociation of the centrosymmetric dinuclear complex to two mononuclear species instead of a syn-cooperative catalysis. Density functional theory (DFT) calculations have been performed to rationalize our proposed mechanistic pathway for phosphatase activity. The comparative analysis concludes the following facts under experimental conditions: (1) the halide bound to the active site affects the overall rate in the order: Cl(-) > Br(-) > I(-) regardless of nuclearity; (2) dinuclear complexes prevail over the mononuclear ones.


Subject(s)
Combinatorial Chemistry Techniques , Coordination Complexes/chemistry , Phosphoric Monoester Hydrolases/metabolism , Quantum Theory , Zinc/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , Enzyme Activation , Hydrolysis , Kinetics , Ligands , Models, Molecular , Molecular Structure , Phosphoric Monoester Hydrolases/chemistry , Zinc/metabolism
2.
Inorg Chem ; 51(16): 8750-9, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22867434

ABSTRACT

Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.


Subject(s)
Catechols/chemistry , Coordination Complexes/chemical synthesis , Free Radicals/chemistry , Zinc/chemistry , Benzene Derivatives/chemistry , Benzoquinones/chemistry , Biomimetic Materials/chemistry , Catalysis , Catechol Oxidase/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Kinetics , Ligands , Molecular Structure , Oxidation-Reduction , Piperazines/chemistry , Pyridines/chemistry , Quantum Theory , Spectrophotometry , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...