Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 7693, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509782

ABSTRACT

The scaling of many photonic quantum information processing systems is ultimately limited by the flux of quantum light throughout an integrated photonic circuit. Source brightness and waveguide loss set basic limits on the on-chip photon flux. While substantial progress has been made, separately, towards ultra-low loss chip-scale photonic circuits and high brightness single-photon sources, integration of these technologies has remained elusive. Here, we report the integration of a quantum emitter single-photon source with a wafer-scale, ultra-low loss silicon nitride photonic circuit. We demonstrate triggered and pure single-photon emission into a Si3N4 photonic circuit with ≈ 1 dB/m propagation loss at a wavelength of ≈ 930 nm. We also observe resonance fluorescence in the strong drive regime, showing promise towards coherent control of quantum emitters. These results are a step forward towards scaled chip-integrated photonic quantum information systems in which storing, time-demultiplexing or buffering of deterministically generated single-photons is critical.

2.
Phys Rev Lett ; 126(24): 243901, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34213944

ABSTRACT

In semiconductor nano-optomechanical resonators, several forms of light-matter interaction can enrich the canonical radiation pressure coupling of light and mechanical motion and give rise to new dynamical regimes. Here, we observe an electro-optomechanical modulation instability in a gallium arsenide disk resonator. The regime is evidenced by the concomitant formation of regular and dense combs in the radio-frequency and optical spectrums of the resonator associated with a permanent pulsatory dynamics of the mechanical motion and optical intensity. The mutual coupling between light, mechanical oscillations, carriers, and heat, notably through photothermal interactions, stabilizes an extended mechanical comb in the ultrahigh frequency range that can be controlled optically.

3.
Sci Total Environ ; 725: 138351, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32304965

ABSTRACT

Discharge of treated municipal wastewater containing arsenic (As) may cause adverse effects on the environment and drinking water sources. Arsenic concentrations were measured throughout the treatment systems at two municipal wastewater plants in New Jersey, USA. The efficiency of As removal by ferric chloride and alum coagulants were evaluated. Besides, the effects of suspended solids in the mixed liquor, pH, and orthophosphate (PO43-) on As removal were investigated. The total recoverable As (TAs) concentrations in the influent and effluent of Plant A were in the ranges of 2.00-3.00 and 1.50-2.30 µg/L, respectively. The results indicated that <30% of the As was removed by the conventional biological wastewater treatment processes. The influent and effluent TAs concentrations at Plant B was below 1.00 µg/L. The bench-scale coagulation results demonstrated for the first time that the coagulation treatment could not effectively remove As from the municipal wastewater to <2.00 µg/L. Very high doses of the coagulants (8 and 40 mg/L of Fe(III) or Al(III)) were required to reduce the TAs from 2.84 and 8.61 µg/L in the primary clarifier effluent and arsenate-spiked effluent samples to <2.00 µg/L, respectively, which could be attributed to the high concentrations of PO43- and dissolved organic matters (DOM) in the wastewater. The protein DOM in wastewater may negatively impact removal efficiencies more than the DOM in natural water, which mainly consists of humic substances. Furthermore, an artificial neural network was constructed to determine the relative importance of different parameters for As removal. Under the experimental conditions, the importance followed the order: coagulant dose>dissolved PO43- > initial As concentration > pH. The findings of this study will help develop effective treatment processes to remove As from municipal wastewater.

4.
Opt Express ; 27(9): 12182, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31052762

ABSTRACT

An erratum is presented to correct for a typo in the appendix of the original article.

5.
Opt Express ; 25(20): 24639-24649, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041409

ABSTRACT

Optomechanical systems based on nanophotonics are advancing the field of precision motion measurement, quantum control and nanomechanical sensing. In this context III-V semiconductors offer original assets like the heteroepitaxial growth of optimized metamaterials for photon/phonon interactions. GaAs has already demonstrated high performances in optomechanics but suffers from two photon absorption (TPA) at the telecom wavelength, which can limit the cooperativity. Here, we investigate TPA-free III-V semiconductor materials for optomechanics applications: GaAs lattice-matched In0.5Ga0.5P and Al0.4Ga0.6As. We report on the fabrication and optical characterization of high frequency (500-700 MHz) optomechanical disks made out of these two materials, demonstrating high optical and mechanical Q in ambient conditions. Finally we achieve operating these new devices as laser-sustained optomechanical self-oscillators, and draw a first comparative study with existing GaAs systems.

6.
Opt Express ; 23(15): 19656-72, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367623

ABSTRACT

Whispering gallery modes in GaAs disk resonators reach half a million of optical quality factor. These high Qs remain still well below the ultimate design limit set by bending losses. Here we investigate the origin of residual optical dissipation in these devices. A Transmission Electron Microscope analysis is combined with an improved Volume Current Method to precisely quantify optical scattering losses by roughness and waviness of the structures, and gauge their importance relative to intrinsic material and radiation losses. The analysis also provides a qualitative description of the surface reconstruction layer, whose optical absorption is then revealed by comparing spectroscopy experiments in air and in different liquids. Other linear and nonlinear optical loss channels in the disks are evaluated likewise. Routes are given to further improve the performances of these miniature GaAs cavities.

SELECTION OF CITATIONS
SEARCH DETAIL
...