Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS Comput Biol ; 17(9): e1009382, 2021 09.
Article in English | MEDLINE | ID: mdl-34543288

ABSTRACT

The repurposing of biomedical data is inhibited by its fragmented and multi-formatted nature that requires redundant investment of time and resources by data scientists. This is particularly true for Type 1 Diabetes (T1D), one of the most intensely studied common childhood diseases. Intense investigation of the contribution of pancreatic ß-islet and T-lymphocytes in T1D has been made. However, genetic contributions from B-lymphocytes, which are known to play a role in a subset of T1D patients, remain relatively understudied. We have addressed this issue through the creation of Biomedical Data Commons (BMDC), a knowledge graph that integrates data from multiple sources into a single queryable format. This increases the speed of analysis by multiple orders of magnitude. We develop a pipeline using B-lymphocyte multi-dimensional epigenome and connectome data and deploy BMDC to assess genetic variants in the context of Type 1 Diabetes (T1D). Pipeline-identified variants are primarily common, non-coding, poorly conserved, and are of unknown clinical significance. While variants and their chromatin connectivity are cell-type specific, they are associated with well-studied disease genes in T-lymphocytes. Candidates include established variants in the HLA-DQB1 and HLA-DRB1 and IL2RA loci that have previously been demonstrated to protect against T1D in humans and mice providing validation for this method. Others are included in the well-established T1D GRS2 genetic risk scoring method. More intriguingly, other prioritized variants are completely novel and form the basis for future mechanistic and clinical validation studies The BMDC community-based platform can be expanded and repurposed to increase the accessibility, reproducibility, and productivity of biomedical information for diverse applications including the prioritization of cell type-specific disease alleles from complex phenotypes.


Subject(s)
B-Lymphocytes/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Animals , Child , Computational Biology , Databases, Genetic/statistics & numerical data , Gene Regulatory Networks , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study/statistics & numerical data , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Humans , Ikaros Transcription Factor/genetics , Interleukin-2 Receptor alpha Subunit/genetics , Mice , Polymorphism, Single Nucleotide , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...