Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 65: 337-47, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23735282

ABSTRACT

Biphenyl carboxylic acids, exemplified by compound 5, are known potent inhibitors of diacylglycerol acyltransferase, DGAT1, an enzyme involved in the final committed step of triglyceride biosynthesis. We have synthesized and evaluated 2-phenylthiazole, 4-phenylthiazole, and 5-phenylthiazole analogs as DGAT1 inhibitors. The 5-phenylthiazole series exhibited potent DGAT1 inhibition when evaluated using an in vitro enzymatic assay and an in vivo fat tolerance test in mice. Compound 33 (IC50 = 23 nM) exhibiting promising oral pharmacokinetic parameters (AUCinf = 7058 ng h/ml, T1/2 = 0.83 h) coupled with 87 percent reduction of plasma triglycerides in vivo may serve as a lead for developing newer anti-obesity agents.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology , Triglycerides/antagonists & inhibitors , Administration, Oral , Animals , Diacylglycerol O-Acyltransferase/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry , Triglycerides/blood
2.
Eur J Med Chem ; 54: 324-42, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22683241

ABSTRACT

Diacylglycerol acyltransferase, DGAT1, is a promising target enzyme for obesity due to its involvement in the committed step of triglyceride biosynthesis. Amino biphenyl carboxylic acids, exemplified by compound 4, are known potent inhibitors of hDGAT1. However the high cLogP and poor solubility of these biphenyl analogs might tend to limit their development. We have synthesized and evaluated compounds containing 3-phenylisoxazole, 5-phenyloxazole, and 3-phenyl-1,2,4-oxadiazole biaryl units for their hDGAT1 inhibition. Our aim in synthesizing such heterocyclic analogs was to improve the cLogP and solubility of these molecules while retaining hDGAT1 potency. Several compounds within the 3-phenylisoxazole series exhibited potent hDGAT1 inhibition when evaluated using an in vitro enzymatic assay. Certain promising compounds were studied for their potential to reduce triglyceride levels using an in vivo fat tolerance test in mice and were also evaluated for any possible improvement to their solubility. Compound 40a (IC(50) = 64 nM) with an in vivo plasma triglyceride reduction of 90 percent, and a solubility of 0.43 mg/ml at pH 7.4 may serve as a new lead for developing newer anti-obesity agents.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Oxadiazoles/chemical synthesis , Oxadiazoles/pharmacology , Urea/chemistry , Animals , Chemistry Techniques, Synthetic , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Isoxazoles/chemistry , Mice , Oxadiazoles/chemistry , Solubility , Structure-Activity Relationship , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...